LLMのためのコーディングテスト作成 〜Spark SQLに焦点を当てて〜
はじめに コード生成のための大規模言語モデル(LLM)の活用はますます一般的になっており、より速く、よりスマートにコーディングできる利点があります。しかし、LLMが生成するコードの正確性が主な懸念点です。多くのオープンソースのコーディングベンチマークは一般的なコーディングスキルの評価を目的としていますが、企業環境では、LLMは一般的なプログラミング能力だけでなく、MLflowやSpark SQLといった特定のライブラリやツールの利用にも対応する必要があります。 このため、LLMが特定のコーディングライブラリにおける能力を体系的に評価する方法が求められています。 本ブログ記事では、この課題に対処するため、 LLM向けのライブラリ特化型コードテストを生成する手法をご紹介 します。これらの生成されたテストケースは、モデルを評価するための構造化された方法を提供し、特定のライブラリに適したモデルを選定する助けとなります。また、ドメイン固有のファインチューニングにより、特定のライブラリへの熟練度向上も測定可能です。 この記事
Databricks で Text2SQL のパフォーマンスを簡単に向上
Databricksでの巧みなプロンプトとファインチューニングにより、Llama3 8B で Spider dev データセットの 79.9% に到達した方法。
DatabricksIQ LLMの品質向上 - AIによるテーブル説明文の生成
最近、 Unity CatalogのAI生成コメント をサポートする基礎となるアルゴリズムに大幅な改善を加えました。 その結果を皆さんにお伝えできることを嬉しく思います。Databricks のデータインテリジェンスエンジンである DatabricksIQ を通じて、AIによって生成されたコメントは、顧客のUnity Catalogテーブルの新しいドキュメントの大部分をすでに生成しており、最近の機能強化は、この非常に人気のある機能をさらに強化します。 このブログでは、トレーニングデータの合成に更新されたオープンソースLLMを使用する方法、トレーニングデータのクリーニングにヒューリスティックフィルターを使用する方法、ファインチューニング用に更新されたベースモデルを使用する方法、および自動ベンチマークで利用される拡張評価セットを使用する方法について説明します。最小限の労力で、これらの変更により、 オフライン ベンチマークで以前に導入されたモデルと比較して、優先率が 2倍に増加し ました。 さらに広い意味では、この取り
Databricksの検索機能へのインテリジェンスの追加
Databricksワークスペースの検索機能が大幅に改善されました。これらの機能強化は 、 Databricksプラットフォーム内のデータインテリジェンスエンジンであるDatabricksIQ を 基盤として おり、AIを活用したよりインテリジェントな検索エクスペリエンスを提供します。 AIが生成したメタデータを利用した検索 Databricksの検索機能の主なメリットの1つは 、 Unity Catalog で 管理されているデータに対して AIが生成したテーブルとカラムのコメント を 利用できる ことです 。これらのコメントにより、検索エンジンはデータの意味とセマンティクスを理解することができ、より関連性が高く、正確で、実用的な結果を生成するために必要なコンテキストを提供します。 AIが生成するコメントはDatabricksIQによって提供されます。DatabricksIQは、検索ユースケース向けに、様々な業界のスキーマ例からエンタープライズデータ向けに特別にチューニングされた大規模言語モデル(LLM)を採用