メインコンテンツへジャンプ
ページ 1

dbtとDatabricksを用いてコスパの良いリアルタイムデータ処理を行う

ビジネスが成長するにつれ、データ量はGBからTB(またはそれ以上)に拡大し、レイテンシー要求は数時間から数分(またはそれ以下)になり、ビジネスに新鮮な洞察を提供するためのコストはますます高くなります。これまでPythonやScalaのデータエンジニアは、このような需要に応えるためにストリーミングを利用し、新しいデータをリアルタイムで効率的に処理してきましたが、SQLベースのdbtパイプラインを拡張する必要があるアナリティクスエンジニアには、このような選択肢はありませんでした。 しかし今は違います!このブログでは、Databricks の新しいストリーミングテーブルとマテリアライズドビューを使用して、SQL と dbt のシンプルさで新鮮なリアルタイムのインサイトをビジネスに提供する方法を説明します。 背景 2023 Data + AI Summitでは、 Databricks SQLにストリーミングテーブルとマテリアライズドビューを導入 しました。この素晴らしい機能により、Databricks SQL ユーザーは