Databricks上で高度にスケーラブルなディープ推薦システムを訓練する(パート1)
推薦システム(RecSys)は、さまざまなプラットフォームでパーソナライズされたコンテンツの提案を支える現代のデジタル体験の不可欠な部分となっています。これらの洗練されたシステムとアルゴリズムは、ユーザーの行動、好み、アイテムの特性を分析し、興味のあるアイテムを予測し、推奨します。ビッグデータと機械学習の時代において、推薦システムは単純な協調フィルタリングのアプローチから、深層学習技術を活用する複雑なモデルへと進化しています。 これらの推薦システムをスケールすることは、特に何 百万人ものユーザーや何千もの製品を扱う場合には、困難な場合があります。これを行うには、コスト、効率、精度のバランスを見つける必要があります。 このスケーラビリティの問題に対処する一般的なアプローチは、2段階のプロセスを含みます:初期の効率的な「広範な検索」に続いて、最も関連性の高いアイテムに対するより計算的に集中的な「狭範な検索」です。例えば、映画の推薦では、効果的なモデルはまず検索空間を数千からユーザーごとに約100項目に絞り込み、その後、
Databricks、Brickbuilderプログラムを拡張してUnity Catalog Acceleratorsを追加
本日、Brickbuilder Unity Catalog Acceleratorsを発表いたします。 この プログラム は、システムインテグレーターやコンサルティングパートナーの専門知識と、実績のあるフレームワークや構築済みのコードを組み合わせて、企業が特定の方法論や Databricksデータインテリジェンスプラットフォーム の機能を迅速に実装できるように支援するものです。 パートナーソリューションとアクセラレータで構成されるBrickbuilderプログラムは、 業界と 移行ソリューションに 焦点を当てて始まり、あらゆる規模の顧客が数ヶ月ではなく数週間でDatabricksデータインテリジェンスプラットフォームを使用してレイクハウスアーキテクチャーをセットアップし、充実させることを支援するアクセラレーターを含むように急速に拡大しました。 今日、Databricksは、生産性を向上させ、価値を最適化するために、顧客のあらゆる段階に適合するアクセラレーターを開発するために、トップパートナーとの協力と投資を続けて
AIを用いた、マイグレーションのための新たなBrickbuilderソリューションを追加しました!
過去2年間、Databricksは業界、マイグレーション、データおよびAIのユースケースのための革新的なソリューションを構築するために、主要なコンサルティングパートナーと協力してきました。 Databricks Brickbuilder ソリューションと アクセラレータは 、お客様の導入実績を基盤として、 Databricks データインテリジェンスプラットフォームの 可能性を最大限に引き出し、生産性を向上させ、データから価値を引き出すことができるように、パートナーの経験と知識をパッケージ化したものです。 Databricksは現在までに、レガシーシステムの移行、需要予測、顧客360、リスク管理、製品パフォーマンスなど、 60のパートナーソリューションを立ち上げて います。 最新のマイグレーションBrickbuilderソリューションと、Databricksパートナーがどのよ うにレイクハウスアーキテクチャへのエンドツーエンドのマイグレーションプロセスを段階的アプローチで支援しているかをご覧ください。 その結果、リ