メインコンテンツへジャンプ

Databricksコミュニティ内には、コミュニティメンバーがデータ分析、データエンジニアリング、機械学習に関するベストプラクティス、チュートリアル、洞察を共有する技術ブログがあります。まだDatabricksコミュニティのメンバーでない場合は、こちらをチェックしてみてください。

今月は、Databricksデータインテリジェンスプラットフォームの新機能や機能を活用するためのヒントを提供する最近の技術ブログをいくつかハイライトしています。

マルチモデルLLM開発の簡素化:LiteLLMとDatabricksを使った開発者ガイド
DatabricksとLiteLLMをどのように始め、LiteLLMとDatabricksがどのように補完し合い、litellm.completionを使用してDatabricks Foundation Models APIからモデルを呼び出すクイックスタート例。

新しいデータアナリスト:AIの時代にDatabricks GenieでBIを変革する
アナリストがDatabricks GenieとDatabricks Assistantを使用して自分の影響力をどのように拡大するか。

システムテーブルで使用するトップ10のクエリ
あなたのデータインテリジェンスプラットフォームのステータスと健康状態についての最も重要な10の質問に答えるために使用できるクエリのリスト。

DatabricksワークフローとのCI/CD統合
Databricksアセットバンドルを始めて、CI/CDとDatabricksワークフローの設定方法を学びましょう。

Databricks Communityからもっと詳しく見てみるか、あなたのベストプラクティスを共有して参加してください。

Databricks 無料トライアル

関連記事

スーパーノヴァ!ブラックホール!ストリーミングデータ!

Translation Reviewed by Akihiro.Kuwano 概要 このブログ投稿は、Data + AI Summit 2024でのセッション スーパーノヴァからLLMsへ のフォローアップで、ここでは誰でもApache Kafkaから公開されているNASAの衛星データを消費し、処理する方法を示しました。 多くのKafkaのデモとは異なり、再現性が低いか、シミュレートされたデータに依存しているのではなく、私はNASAの公開されている ガンマ線座標ネットワーク (GCN)からのライブデータストリームの分析方法を示します。これは、さまざまな衛星から来るスーパーノヴァとブラックホールのデータを統合しています。 オープンソースの Apache Spark™ と Apache Kafka だけを使ってソリューションを作ることも可能ですが、このタスクには...

Databricksレイクハウスモニタリングで高品質な予測を確保する

予測モデルは、多くの企業が将来のトレンドを予測するために重要ですが、その精度は入力データの品質に大きく依存します。 データの品質が低いと、予測が不正確になり、最適な意思決定ができなくなる可能性があります。 ここで、 Databricksレイクハウスモニタリングが登場します。これは、予測モデルに流入するデータの品質とモデルのパフォーマンス自体の両方を監視するための統合ソリューションを提供します。 モニタリングは、予測モデルにとって特に重要です。 予測は時系列データを扱うため、データの時間的コンポーネントとシーケンシャルな性質により、複雑さが増します。 入力データの統計的プロパティが時間の経過とともに変化するデータ ドリフトなどの問題は、迅速に検出および対処しないと、予測精度を大幅に低下させる可能性があります。 さらに、予測モデルのパフォーマンスは、予測値と実際の値を比較する平均絶対パーセント誤差 (MAPE) などのメトリクスによって測定されることがよくあります。 ただし、グラウンド トゥルース値はすぐには利用でき

Unity Catalog ガバナンスの実際の動作:モニタリング、レポーティング、リネージ

Databricks Unity Catalog(UC)は、クラウドやデータプラットフォームにわたる企業のすべてのデータとAI資産に対して、単一の統合ガバナンスソリューションを提供します。 このブログでは、 Unity Catalog Governance Value Levers(ガバナンス・バリュー・レバー )をより深く掘り下げ、包括的なデータとAIのモニタリング、レポーティング、リネージを通じて、具体的にどのようにポジティブなビジネス成果を実現しているかを紹介します。 従来の非統合ガバナンスに伴う全体的な課題 Unity Catalog Governance Value Levers ブログでは、情報セキュリティ、アクセス制御、利用監視、ガードレールの制定、データ資産からの「唯一の信頼できる情報源」の洞察の取得など、ガバナンスの組織的重要性の「理由」について議論しました。 Databricks UCがなければ、従来のガバナンスソリューションではもはやニーズに対応できません。 議論された主な課題には、複数のベ
プラットフォームブログ一覧へ