メインコンテンツへジャンプ
ログイン
      • Databricks を知る
        • エグゼクティブ向け
          • スタートアップ向け
            • レイクハウスアーキテクチャ
              • Mosaic Research
              • 導入事例
                • 注目の導入事例
                  • 導入事例一覧へ
                  • パートナー
                    • クラウドプロバイダ
                      Databricks on AWS、Azure、GCP
                      • コンサルティング・SI
                        Databricks の構築・デプロイ、Databricks への移行のエキスパート
                        • 技術パートナー
                          既存のツールをレイクハウスに接続
                          • C&SI パートナー
                            レイクハウスの構築・デプロイメント、レイクハウスへの移行
                            • データパートナー
                              データコンシューマーのエコシステムにアクセス
                              • パートナーソリューション
                                業界・移行のニーズに応じたカスタムソリューション
                                • Databricks で構築
                                  ビジネスの創造・マーケティング・成長
                                • Databricks プラットフォーム
                                  • プラットフォームの概要
                                    データ・分析・AI のための統合プラットフォーム
                                    • データ管理
                                      データの信頼性・セキュリティ・パフォーマンス
                                      • 共有
                                        オープン、セキュア、ゼロコピーでのデータ共有
                                        • データウェアハウジング
                                          バッチ、ストリーミングデータのための ETL とオーケストレーション
                                          • ガバナンス
                                            データ・分析・AI のための統合ガバナンス
                                            • リアルタイム分析
                                              リアルタイム分析、AI、アプリケーションをシンプルに
                                              • 人工知能(AI)
                                                ML と生成 AI アプリケーションの構築とデプロイメント
                                                • データエンジニアリング
                                                  バッチ、ストリーミングデータのための ETL とオーケストレーション
                                                  • BI
                                                    実世界データのインテリジェント分析
                                                    • データサイエンス
                                                      データサイエンスの大規模な連携
                                                    • 統合とデータ
                                                      • マーケットプレイス
                                                        データ、分析、AI のためのオープンマーケットプレイス
                                                        • IDE 統合
                                                          お気に入りの IDE(統合開発環境)でレイクハウスを構築
                                                          • パートナーコネクト
                                                            Databricks エコシステムの検索と統合
                                                          • ご利用料金
                                                            • Databricks のご利用料金
                                                              料金設定、DBU、その他
                                                              • コスト計算ツール
                                                                クラウド利用でのコンピュートコストの試算
                                                              • オープンソース
                                                                • オープンソーステクノロジー
                                                                  プラットフォームを支えるイノベーションをもっと詳しく
                                                                • 業界向け Databricks
                                                                  • 通信
                                                                    • メディア・エンターテイメント
                                                                      • 金融サービス
                                                                        • 官公庁・公共機関
                                                                          • 医療・ライフサイエンス
                                                                            • リテール・消費財
                                                                              • 製造
                                                                                • 全て見る
                                                                                • クロスインダストリーソリューション
                                                                                  • サイバーセキュリティ
                                                                                    • マーケティング
                                                                                    • 移行・デプロイメント
                                                                                      • データの移行
                                                                                        • プロフェッショナルサービス
                                                                                        • ソリューションアクセラレータ
                                                                                          • ソリューションアクセラレータ一覧
                                                                                            成果を加速
                                                                                          • トレーニング・認定試験
                                                                                            • 学習の概要
                                                                                              トレーニング、認定、イベントなどのハブ
                                                                                              • トレーニング概要
                                                                                                ニーズに合わせたカリキュラムを探す
                                                                                                • Databricks アカデミー
                                                                                                  Databricks ラーニングプラットフォームにサインインする
                                                                                                  • 認定
                                                                                                    スキル・認定で差別化を図る
                                                                                                    • 大学との連携
                                                                                                      Databricks を教材として活用
                                                                                                    • イベント
                                                                                                      • DATA+AI サミット
                                                                                                        • Data+AI ワールドツアー
                                                                                                          • Data Intelligence Days
                                                                                                            • イベントカレンダー
                                                                                                            • ブログ・ポッドキャスト
                                                                                                              • Databricks ブログ
                                                                                                                最新情報、製品発表、その他の情報
                                                                                                                • Databricks Mosaic AIリサーチブログ
                                                                                                                  AI世代に関する最新リサーチ
                                                                                                                  • Data Brew ポッドキャスト
                                                                                                                    ご相談・お問い合わせ
                                                                                                                    • ポッドキャスト:Data+AI のチャンピオン
                                                                                                                      イノベーションを支えるデータリーダーのインサイト
                                                                                                                    • お役立ちリソース
                                                                                                                      • カスタマーサポート
                                                                                                                        • ドキュメント
                                                                                                                          • コミュニティ
                                                                                                                          • もっと詳しく
                                                                                                                            • リソースセンター
                                                                                                                              • デモセンター
                                                                                                                              • 企業概要
                                                                                                                                • Databricks について
                                                                                                                                  • 経営陣
                                                                                                                                    • Databricks Ventures
                                                                                                                                      • ご相談・お問い合わせ
                                                                                                                                      • 採用情報
                                                                                                                                        • 採用情報概要
                                                                                                                                          • 求人情報
                                                                                                                                          • プレス・ニュース記事
                                                                                                                                            • ニュースルーム
                                                                                                                                              • 受賞歴と業界評価
                                                                                                                                              • セキュリティと信頼
                                                                                                                                                • セキュリティと信頼
                                                                                                                                            • 是非ご検討ください!
                                                                                                                                            • デモを見る
                                                                                                                                            • ログイン
                                                                                                                                            • Databricks 無料トライアル
                                                                                                                                            1. ブログ
                                                                                                                                            2. /
                                                                                                                                              パートナー
                                                                                                                                            3. /
                                                                                                                                              記事

                                                                                                                                            ゲスト投稿: Laminiを使用してDatabricksのデータで独自のLLMをトレーニングする

                                                                                                                                            db-662-blog-og

                                                                                                                                            Published: June 14, 2023

                                                                                                                                            パートナー1分未満

                                                                                                                                            Sharon Zhou による投稿

                                                                                                                                            この投稿を共有する

                                                                                                                                            最新の投稿を通知します

                                                                                                                                            Original : Guest Post: Using Lamini to train your own LLM on your Databricks data

                                                                                                                                            翻訳:Junichi Maruyama

                                                                                                                                            これは私たちのスタートアップパートナーである Lamini からのゲスト投稿です。

                                                                                                                                             

                                                                                                                                            Play with this LLM trained on Lamini documentation, live now!

                                                                                                                                            上の写真のLLMは、Laminiのドキュメントで訓練されたものです。遊んでみてください。 Live now!

                                                                                                                                            S&P500の20%以上が今年(2023年)の第1四半期に決算説明会でAIを話題にしたのですから。LLMはあなたの製品に魔法をかけ、顧客を喜ばせ、トップラインを増加させることができます。顧客は、パーソナライズされた情報を含むあなたのすべてのドキュメントにアクセスし、数秒で自分の質問に答えることができます。また、副操縦士がいれば、あらゆる新機能の構築が10倍速くなり、エンジニアリングコストや運用コストを削減することができます。

                                                                                                                                            しかし、GPT-4のような公開LLMは、ほとんど他人のデータで訓練されています。しかし、GPT-4のような公開LLMは、ほとんど他人のデータで訓練されたもので、確かに優れていますが、あなたのデータやユースケースに合わせたパーソナライズができません。もし、GPT-4があなたのビジネスに特化してチューニングされていたら、どんなに強力なものになるか想像してみてください!

                                                                                                                                            さらに悪いことに、最も価値のあるデータを、独占的に渡すわけにはいきません。データ漏えいや顧客との約束に不安を感じている。IPやソースコードを第三者に渡してしまい、せっかく築いたデータ堀を放棄してしまうことに不安を感じている。AIサービスの信頼性やメンテナンスに不安があり、AIサービスは適応が早く、新しいバージョンで重要なユースケースが壊れてしまう。

                                                                                                                                            Github がGithub Copilot で行ったように、あるいはOpenAIがChatGPTで行ったように、何十人ものトップAI研究者を雇ってプライベートLLMを構築してもらうという選択肢もあります。いずれのソリューションも、時間とコストがかかり、ROIも非常に低くなります。だから、あなたは行き詰まりを感じているのです。

                                                                                                                                            私たちは、開発者が自分のデータで訓練した独自のLLMを作成できるようにする新製品を発表できることをうれしく思っています。AI研究者のチームも、VPCからデータを持ち出すことも、専門的なモデルの専門知識も必要ありません。

                                                                                                                                            お客様からは、LaminiなしではLLMの使用と精度をここまで高めることはできなかったとお言葉をいただいています。また、ChatGPTと検索を比較したブラインドテストでは、LaminiでトレーニングしたLLMが最も優れており、彼らのユースケースに最も近いと言われています。

                                                                                                                                            その前に:なぜLLMを自分でトレーニングするのか?

                                                                                                                                            9 Reasons  to Train Your Own LLM

                                                                                                                                            ChatGPTは多くの人を驚かせました。しかし、何十年もこの分野に携わってきたAI研究者の観点からすると、有望なのは常にお客様のデータで訓練されたモデルです。ChatGPTのようなものですが、あなたの特定のニーズとコンテンツに合わせたものです。LLMのトレーニングが短期的にも長期的にも理にかなっているのには、いくつかの理由があります。

                                                                                                                                            • より良いパフォーマンス: LLMから一貫性のある出力が欲しい、虚偽の主張をしたり競合他社を持ち出したりするような幻覚を見せなくしたい。何十年もの時間をかけてすべてのデータに目を通す専門家のように、ユースケースに対してより良いパフォーマンスを求めるのです。ギガバイトやテラバイトのデータに対して、小さなプロンプトに収まるような重要なものはありません。
                                                                                                                                            • データプライバシー: LLMにプライベートなデータにアクセスさせたいが、すべてを自社のインフラで管理したい。そのため、第三者にデータを提供することは避けたい。また、競合他社に利益をもたらす可能性のある一般的なモデルの改良に、自社の専有データ(またはその派生物)が使用され、自社のデータ・モートを脅かすようなことは避けたいでしょう。
                                                                                                                                            • コスト: より低いコストで運用したい。既製品のソリューションは、顧客が頻繁に使用すると、法外に高価になることがあります。
                                                                                                                                            • レイテンシー: レイテンシーを時間軸で選択し、コントロールしたい。市販のAPIでは、速度が制限されていたり、本番のユースケースには遅すぎたりすることがよくあります。
                                                                                                                                            • アップタイム: 既製のAPIは稼働時間が一定せず、最高のソリューションでも稼働率は99%未満です。DevOpsチームがサーバーをコントロールできるようにしたいのですが、サードパーティーでは、トラフィックの多い時間帯や停電時に他の顧客と使用量を争うことになります。
                                                                                                                                            • オーナーシップ: そのため、エンジニアリング・チームが、何十人ものML専門家を新たに雇用することなく、それを構築することを望んでいます。また、エンジニアが自社の製品やデータを最もよく知っているため、プロフェッショナル・サービスを契約したくないでしょうし、この分野の進歩が速いため、LLMを常にリフレッシュする必要があります。
                                                                                                                                            • フレキシビリティ: 使用するLLMプロバイダーやオープンソースソリューションをコントロールし、モデリングスタックをユースケースやカスタムアプリケーションに適応させることができるようにしたい。
                                                                                                                                            • バイアス: 既製品のモデルにはバイアスがあります。LLMはトレーニングによって、気になる次元に沿ったバイアスを学習させることができます。
                                                                                                                                            • コンテンツコントロール: モデルに提供するトレーニングデータをコントロールすることができます。これは、不適切でライセンスされていないコンテンツを緩和し、適切にライセンスされた関連性の高いデータという法的要件を満たすために重要です。ベースモデルの中には、これまで触れてきたデータについてより透明性の高いものがあり、それに基づいてベースモデルを選択することができます。

                                                                                                                                            LLMを自分でトレーニングする仕組み

                                                                                                                                            LLMを自分でトレーニングするというアイデアは、困難なものに思えるかもしれません。LLMをベースモデル以上に改善するためにデータを適切な形式で取得し、それを自分のインフラやGPUで確実にホストするためには、多くのコードと専門知識が必要です。Laminiライブラリは、少量のコードを書いてDatabricksの既存データにアクセスするだけで、そのプロセスを簡素化します。

                                                                                                                                            How training your own LLM works

                                                                                                                                            1. まず、Laminiは簡単なインストールでDatabricksクラスタに接続します。LLMにアクセスさせたい重要なデータを指定し、データの粒度を揃えます。
                                                                                                                                            2. そして、Laminiが自動的にインフラを管理します:ベースモデルの選択、トレーニングのためのデータ変換、検索による拡張トレーニング、パラメータ効率的な微調整、データ生成、自動評価など。このインフラは、通常、AI研究者やAIインフラエンジニアが数カ月かけて構築し、長期的にメンテナンスしています。ハイレベルな機能もローレベルな機能も、コードやホストされたノートブックを通じて利用することができます。
                                                                                                                                            3. 最後に、あなたのデータとカスタムLLMは、トレーニングプロセス中、あなたのVPCに留まります。ここから、組織全体で異なるユースケースや異なるデータに対して、より多くのLLMをトレーニングすることができます。

                                                                                                                                            では、実際にChatGPTを凌駕するプライベートLLMの例を見てみましょう。 もしくは just start playing with it now.

                                                                                                                                            ケーススタディ: 社内のエンジニアリング文書でLLMを養成する

                                                                                                                                            あなたは、膨大な量の社内エンジニアリング・ドキュメントを持っています。ChatGPTのように、コードベースの内部Wikiを持ち、特定のアーキテクチャを学ぶ必要のない領域について質問したり、あなたの仕事に影響を与える他のチームからエラーのデバッグを手伝ってもらったりすることができるようにしたいのでしょう。しかし、ChatGPTはあなたのコードベース全体を把握しているわけではなく、コードベース全体で確実に正確な接続を行うことができず、実際には真実ではない新しい説得力のある知識を作り上げ、関連するトピックに会話を戻すことができません。

                                                                                                                                            例えば、Laminiのエンジニアリング・ドキュメントを見ながら雑談をするような場合です。

                                                                                                                                            ここでは、LLMにすべてのデータを渡した場合と、プロンプトエンジニアリングChatGPTで検索した場合との比較を示します:

                                                                                                                                            User's question Private LLM
                                                                                                                                            Trained with Lamini and Databricks Data
                                                                                                                                            ChatGPT + Retrieval
                                                                                                                                            Laminiに送信できるデータの種類(テキスト、画像、音声など)に制限はありますか? はい、Laminiが扱うことができるデータの種類には制限があります。ドキュメントには、データ形式の最適化、プライバシーとセキュリティの確保に関するガイドラインが記載されています。 Lamini AIは、テキストと画像や音声を組み合わせるなど、マルチモーダルな入力に対応しています。
                                                                                                                                            Laminiはリアルタイム推論やストリーミング推論に対応していますか? はい、Laminiはリアルタイムまたはストリーミング推論をサポートしています。これは、モデルをリアルタイムで更新し、リアルタイムで結果を生成できることを意味し、チャットボットやバーチャルアシスタントなどのアプリケーションに適しています。 いいえ、Laminiは現在、リアルタイムまたはストリーミング推論をサポートしていません。
                                                                                                                                            なぜイチゴはピンク色なのか? Laminiに関連した議論を続けましょう。 わかりません
                                                                                                                                            Table: なおライブ版では常に結果が改善されているため、多少の違いがあることをご了承ください。

                                                                                                                                            ChatGPTの検索では、情報を合成するのに十分な文脈がないため、上表の最初の例のように、Laminiが「テキストと画像や音声の組み合わせなど、マルチモーダルな入力をサポートする」と書いてあるが、そうではないと、頻繁に幻覚を見ている。

                                                                                                                                            また、上表の2番目の例のように、本当は「はい」なのに「いいえ」と答えてしまうなど、検索に失敗すると、判断するためにデータの1%未満しか読んでいないため、存在する情報を見逃してしまいます。このような場合、プロンプトエンジニアリングでは不十分なことが多いのです。

                                                                                                                                            一方、LLMはLaminiのドキュメントを100%熟知しています。LLMは、ラミニのドキュメントを100%熟知し、異なるセクションのドキュメントから情報を集約し、訓練されたように、会話を関連性のあるものに戻すことができます(「わからない」ではなく、「ラミニに関連した議論を続けよう」)。

                                                                                                                                            今すぐこのLLMライブで遊ぼう!Googleアカウントを使ってLaminiにサインインし、質問を始めるだけです。

                                                                                                                                            Databricksのデータで自分だけのLLMを育成する3つのステップ 1️⃣2️⃣3️⃣

                                                                                                                                            ここでは、あなた自身の文書(または他のデータ)に対して、同じLLMを、世の中のどこよりも速く、より良く得るために必要なステップを紹介します:

                                                                                                                                            System Architecture to Train Your Own LLM

                                                                                                                                            Step 1: Databricksの環境にLaminiをセットアップします。Databricks VPCにVMを作成し、その中にLaminiのDockerをインストールします。

                                                                                                                                            • LLMを実行できるGPUインスタンス、すなわちモダンLinux(Ubuntuなど)、T4 GPU以上、100GBのディスクを作成する
                                                                                                                                            • GPUドライバとDockerランタイムをインストールする
                                                                                                                                            • Laminiのインストール(Dockerコンテナを含むtar.gzとインストールスクリプトを1つずつ)
                                                                                                                                            • lamini-upを実行してLaminiのサービスを立ち上げる
                                                                                                                                            • VPC内にクライアントがアクセスできるポート(例:80)を開設してください。

                                                                                                                                            Using Lamini and Databricks in the same notebook

                                                                                                                                            Step 2: Lamini libraryでコードを書いて、データレイクハウスをベースLLMに接続することで、重要なデータを指し示すことができます。データはあなたのVPCに残ります。

                                                                                                                                            • LaminiとDatabricksにアクセスできるノートブック(JupyterやDatabricksなど)を開く
                                                                                                                                            • SparkやSparkSQLを使って、Databricksから関連するデータをdataframeとして抽出する。
                                                                                                                                            • データフレームのスキーマにマッチしたLaminiタイプを定義し、データフレームをLaminiオブジェクトに変換する。

                                                                                                                                            Step 3: Lamini libraryを使えば、数行のコードで自分だけのLLMを育成することができます。Laminiは、ファインチューニング、最適化、データ生成、自動評価など、AI研究者チームが行うようなことを行います。このLLMは、あなたのVPCで提供されます。

                                                                                                                                            • Laminiを使用してLLMを定義する。例) `from lamini import LLM; llm = LLM(...., config={""}))`
                                                                                                                                            • LLMにデータを追加する。例)`llm.add_data(dataframe)`
                                                                                                                                            • LLMを評価する。例)`answer = llm(question)`

                                                                                                                                            Lamini は、お客様自身のデータで学習させた独自のLLMを作成することを可能にします。AI研究者のチームも、VPCからデータを持ち出すことも、専門的なモデルの専門知識も必要ありません。

                                                                                                                                            この記事の内容は、Laminiの共同創業者兼CEOであるSharon Zhouがセッションを開催する「Data + AI Summit」ですべて学ぶことができます。Laminiは、Databricksのテクノロジーパートナーです。

                                                                                                                                            Join other top tech companies building their custom LLMs on Lamini and sign up for early access today!

                                                                                                                                            最新の投稿を通知します

                                                                                                                                            関連記事

                                                                                                                                            この投稿を共有する

                                                                                                                                            Databricksの投稿を見逃さないようにしましょう

                                                                                                                                            興味のあるカテゴリを購読して、最新の投稿を受信トレイに届けましょう

                                                                                                                                            Sign up

                                                                                                                                            次は何ですか?

                                                                                                                                            Introducing Collations to Databricks

                                                                                                                                            製品

                                                                                                                                            January 10, 2025/2分で読めます

                                                                                                                                            Databricksにコレーション機能が登場!

                                                                                                                                            DeepSeek R1 on Databricks

                                                                                                                                            お知らせ

                                                                                                                                            January 31, 2025/1分未満

                                                                                                                                            DeepSeek R1 on Databricks

                                                                                                                                            databricks logo
                                                                                                                                            Databricks を選ぶ理由
                                                                                                                                            Databricks を選ぶ理由
                                                                                                                                            • エグゼクティブ向け
                                                                                                                                            • スタートアップ向け
                                                                                                                                            • レイクハウスアーキテクチャ
                                                                                                                                            • Mosaic Research
                                                                                                                                            導入事例
                                                                                                                                            • 全て見る
                                                                                                                                            • 注目の導入事例
                                                                                                                                            パートナー
                                                                                                                                            • クラウドプロバイダ
                                                                                                                                            • 技術パートナー
                                                                                                                                            • データパートナー
                                                                                                                                            • Databricks で構築
                                                                                                                                            • コンサルティング・SI
                                                                                                                                            • C&SI パートナー
                                                                                                                                            • パートナーソリューション
                                                                                                                                            Databricks を選ぶ理由
                                                                                                                                            • エグゼクティブ向け
                                                                                                                                            • スタートアップ向け
                                                                                                                                            • レイクハウスアーキテクチャ
                                                                                                                                            • Mosaic Research
                                                                                                                                            導入事例
                                                                                                                                            • 全て見る
                                                                                                                                            • 注目の導入事例
                                                                                                                                            パートナー
                                                                                                                                            • クラウドプロバイダ
                                                                                                                                            • 技術パートナー
                                                                                                                                            • データパートナー
                                                                                                                                            • Databricks で構築
                                                                                                                                            • コンサルティング・SI
                                                                                                                                            • C&SI パートナー
                                                                                                                                            • パートナーソリューション
                                                                                                                                            製品
                                                                                                                                            レイクハウスプラットフォーム
                                                                                                                                            • プラットフォーム
                                                                                                                                            • 共有
                                                                                                                                            • データガバナンス
                                                                                                                                            • 人工知能(AI)
                                                                                                                                            • DBRX
                                                                                                                                            • データ管理
                                                                                                                                            • データウェアハウス
                                                                                                                                            • データストリーミング
                                                                                                                                            • データエンジニアリング
                                                                                                                                            • データサイエンス
                                                                                                                                            ご利用料金
                                                                                                                                            • 料金設定の概要
                                                                                                                                            • 料金計算ツール
                                                                                                                                            オープンソース
                                                                                                                                            統合とデータ
                                                                                                                                            • マーケットプレイス
                                                                                                                                            • IDE 統合
                                                                                                                                            • パートナーコネクト
                                                                                                                                            レイクハウスプラットフォーム
                                                                                                                                            • プラットフォーム
                                                                                                                                            • 共有
                                                                                                                                            • データガバナンス
                                                                                                                                            • 人工知能(AI)
                                                                                                                                            • DBRX
                                                                                                                                            • データ管理
                                                                                                                                            • データウェアハウス
                                                                                                                                            • データストリーミング
                                                                                                                                            • データエンジニアリング
                                                                                                                                            • データサイエンス
                                                                                                                                            ご利用料金
                                                                                                                                            • 料金設定の概要
                                                                                                                                            • 料金計算ツール
                                                                                                                                            統合とデータ
                                                                                                                                            • マーケットプレイス
                                                                                                                                            • IDE 統合
                                                                                                                                            • パートナーコネクト
                                                                                                                                            ソリューション
                                                                                                                                            業種別
                                                                                                                                            • 通信
                                                                                                                                            • 金融サービス
                                                                                                                                            • 医療・ライフサイエンス
                                                                                                                                            • 製造
                                                                                                                                            • メディア・エンタメ
                                                                                                                                            • 官公庁・公共機関
                                                                                                                                            • リテール・消費財
                                                                                                                                            • 全て表示
                                                                                                                                            クロスインダストリーソリューション
                                                                                                                                            • サイバーセキュリティ
                                                                                                                                            • マーケティング
                                                                                                                                            データの移行
                                                                                                                                            プロフェッショナルサービス
                                                                                                                                            ソリューションアクセラレータ
                                                                                                                                            業種別
                                                                                                                                            • 通信
                                                                                                                                            • 金融サービス
                                                                                                                                            • 医療・ライフサイエンス
                                                                                                                                            • 製造
                                                                                                                                            • メディア・エンタメ
                                                                                                                                            • 官公庁・公共機関
                                                                                                                                            • リテール・消費財
                                                                                                                                            • 全て表示
                                                                                                                                            クロスインダストリーソリューション
                                                                                                                                            • サイバーセキュリティ
                                                                                                                                            • マーケティング
                                                                                                                                            リソース
                                                                                                                                            ドキュメント
                                                                                                                                            カスタマーサポート
                                                                                                                                            コミュニティ
                                                                                                                                            トレーニング・認定試験
                                                                                                                                            • トレーニング概要
                                                                                                                                            • トレーニング
                                                                                                                                            • 認定
                                                                                                                                            • 大学との連携
                                                                                                                                            • Databricks アカデミー
                                                                                                                                            イベント
                                                                                                                                            • DATA+AI サミット
                                                                                                                                            • Data+AI ワールドツアー
                                                                                                                                            • Data Intelligence Days
                                                                                                                                            • イベントカレンダー
                                                                                                                                            ブログ・ポッドキャスト
                                                                                                                                            • Databricks ブログ
                                                                                                                                            • Databricks Mosaic AIリサーチブログ
                                                                                                                                            • Data Brew ポッドキャスト
                                                                                                                                            • Data+AI のチャンピオンシリーズ
                                                                                                                                            トレーニング・認定試験
                                                                                                                                            • トレーニング概要
                                                                                                                                            • トレーニング
                                                                                                                                            • 認定
                                                                                                                                            • 大学との連携
                                                                                                                                            • Databricks アカデミー
                                                                                                                                            イベント
                                                                                                                                            • DATA+AI サミット
                                                                                                                                            • Data+AI ワールドツアー
                                                                                                                                            • Data Intelligence Days
                                                                                                                                            • イベントカレンダー
                                                                                                                                            ブログ・ポッドキャスト
                                                                                                                                            • Databricks ブログ
                                                                                                                                            • Databricks Mosaic AIリサーチブログ
                                                                                                                                            • Data Brew ポッドキャスト
                                                                                                                                            • Data+AI のチャンピオンシリーズ
                                                                                                                                            企業情報
                                                                                                                                            企業概要
                                                                                                                                            • Databricks について
                                                                                                                                            • 経営陣
                                                                                                                                            • Databricks Ventures
                                                                                                                                            • ご相談・お問い合わせ
                                                                                                                                            採用情報
                                                                                                                                            • 採用情報概要
                                                                                                                                            • 求人情報
                                                                                                                                            プレス・ニュース記事
                                                                                                                                            • ニュースルーム
                                                                                                                                            • 受賞歴と業界評価
                                                                                                                                            セキュリティと信頼
                                                                                                                                            企業概要
                                                                                                                                            • Databricks について
                                                                                                                                            • 経営陣
                                                                                                                                            • Databricks Ventures
                                                                                                                                            • ご相談・お問い合わせ
                                                                                                                                            採用情報
                                                                                                                                            • 採用情報概要
                                                                                                                                            • 求人情報
                                                                                                                                            プレス・ニュース記事
                                                                                                                                            • ニュースルーム
                                                                                                                                            • 受賞歴と業界評価
                                                                                                                                            databricks logo

                                                                                                                                            Databricks Inc.
                                                                                                                                            160 Spear Street, 15th Floor
                                                                                                                                            San Francisco, CA 94105
                                                                                                                                            1-866-330-0121

                                                                                                                                            採用情報

                                                                                                                                            © Databricks 2025. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation.

                                                                                                                                            • プライバシー通知
                                                                                                                                            • |利用規約
                                                                                                                                            • |現代奴隷法に関する声明
                                                                                                                                            • |カリフォルニア州のプライバシー権利
                                                                                                                                            • |プライバシー設定