メインコンテンツへジャンプ

機械学習のランタイム

すぐに使用できる最適化された機械学習環境

Illustration

機械学習ランタイム(MLR)は、データサイエンティストと ML の実行者に、一般的なフレームワーク、組み込み AutoML、および最高のパフォーマンスを実現するための最適化を含む、スケーラブルなクラスターを提供します。

メリット

graphic

最適なフレームワーク

ML フレームワークが急激な進化を遂げており、ユーザーは平均 8 つのライブラリを管理する必要があります。ML ランタイムは、特に一般的な ML フレームワークの高性能かつ信頼性のある分散処理、および事前構築されたコンテナを介したカスタム ML 環境へのワンクリックアクセスを提供します。

graphic

強化された機械学習

Hyperopt および MLflow を使用したハイパーパラメータのチューニングやモデル検索といった組み込みの AutoML 機能により、データ準備から推論に至るまで、機械学習を強化します。

secondary-icon-graphic-17

簡素化されたスケーリング

自動管理されたスケーラブルなクラスターインフラストラクチャを使用して、スモールデータからビッグデータへ簡単に移行できます。また、機械学習のランタイムには、特に一般的なアルゴリズムと HorovodRunner(分散型深層学習用の単純な API)に関する独自のパフォーマンス強化が含まれています。

機能

仕組み

機械学習用ランタイムは最上部に構築され、Databricks ランタイムのリリースごとに更新されます。Azure Databricks、AWS クラウド、GPU クラスター、CPU クラスターといった、全ての Databricks 製品でご利用いただけます。

クラスターを作成する際に ML バージョンのランタイムを選択するだけで、ML 用ランタイムを使用することができます。

導入事例

Ready to get started?