メインコンテンツへジャンプ

Generative AI Engineering with Databricks - Japanese

このコースは、最新かつ最も一般的なフレームワークとDatabricksの機能を使用してGenerative AIアプリケーションを構築したいデータサイエンティスト、機械学習エンジニア、その他のデータ実務家を対象としています。

以下では、このコースに含まれる4つのモジュール(4時間)について説明します。

Generative AI Solution Development:(ジェネレーティブAIソリューション開発): このコースでは、RAG(retrieval-augmented generation)メソッドを使用したコンテキスト生成AIソリューションを紹介します。まず、Mosaic AI Playgroundを使って、RAGアーキテクチャとコンテキスト情報の重要性を紹介します。次に、Generative AIソリューションのためにデータを準備する方法を紹介し、このプロセスとRAGアーキテクチャの構築を結びつけます。最後に、コンテキスト埋め込み、ベクター、ベクターデータベース、Mosaic AI Vector Searchの活用に関する概念を探ります。

Generative AI Application Development: 多段階推論LLMチェーンとエージェントを使用した高度なLLMアプリケーションを構築するための情報と実践的な経験が必要ですか?このモジュールでは、まず問題を構成要素に分解し、ビジネスユースケースを強化するために各ステップに最適なモデルを選択する方法を学びます。続いて、LangChainとHuggingFaceトランスフォーマーを利用して多段推論チェーンを構築する方法を紹介します。最後に、エージェントを紹介し、Databricks上で生成モデルを使用した自律エージェントを設計します。

Generative AI Application Evaluation and Governance: ジェネレーティブAIシステムの評価とガバナンスについて学びます。まず、評価とガバナンス/セキュリティシステムを構築する意味と動機を探ります。次に、評価およびガバナンスシステムをDatabricks Data Intelligence Platformに接続します。第三に、特定のコンポーネントやアプリケーションの種類に応じた様々な評価手法を学びます。最後に、パフォーマンスとコストに関するAIシステム全体の評価の分析でコースを締めくくります。

Generative AI Application Deployment and Monitoring: ジェネレーティブAIアプリケーションの展開、運用、監視の方法を学ぶ準備はできていますか?このモジュールでは、Model Servingのようなツールを使用したジェネレーティブAIアプリケーションのデプロイのスキルを習得します。また、ベストプラクティスと推奨されるアーキテクチャに従ってGenerative AIアプリケーションを運用する方法についても説明します。最後に、Lakehouse Monitoringを使用してジェネレーティブAIアプリケーションとそのコンポーネントを監視する方法について説明します。


Languages Available: English | 日本語 | Português BR | 한국어


Skill Level
Associate
Duration
16h
Prerequisites

このコンテンツは以下のようなスキル、知識、能力のある受講者向けに開発されています。

  • 生成 AI の基礎

  • Databricks Machine Learning の開始

Outline

1 日目

  • 生成 AI と LLM

  • 自然言語処理の入門

  • Databricks と LLM

  • LLM アプリケーション

  • 検索拡張生成

  • マルチステージ推論

2 日目

  • LLM のファインチューニング

  • LLM の評価

  • 社会と LLM

  • LLMOps

Upcoming Public Classes

Date
Time
Language
Price
May 19 - 20
09 AM - 05 PM (Asia/Tokyo)
Japanese
$1500.00
Jun 18 - 19
09 AM - 05 PM (Asia/Tokyo)
Japanese
$1500.00
Jul 22 - 23
09 AM - 05 PM (Asia/Tokyo)
Japanese
$1500.00

Public Class Registration

If your company has purchased success credits or has a learning subscription, please fill out the Training Request form. Otherwise, you can register below.

Private Class Request

If your company is interested in private training, please submit a request.

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

Register now

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

Register now

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Data Engineer

Automated Deployment with Databricks Asset Bundles - Japanese

このコースでは、DevOps の原則と Databricks プロジェクトへの適用について包括的に復習します。 まず、コア DevOps、DataOps、継続的インテグレーション (CI)、継続的デプロイ (CD)、テストの概要を説明し、これらの原則をデータエンジニアリングのパイプラインに適用する方法を探ります

次に、CI/CD プロセス内の継続的デプロイに焦点を当て、プロジェクトのデプロイメント用の Databricks REST API、SDK、CLI などのツールを検討します。 Databricks アセットバンドル (DAB) と、それらが CI/CD プロセスにどのように適合するかについて学習します。 主なコンポーネント、フォルダー構造、Databricks のさまざまなターゲット環境へのデプロイを合理化する方法について詳しく説明します。 また、Databricks CLI を使用して、構成の異なる複数の環境に対して変数の追加、変更、検証、デプロイ、および実行を行う方法についても学習します

最後に、このコースでは、Databricks アセットバンドルをローカルでビルド、テスト、デプロイするための対話型開発環境 (IDE) としての Visual Studio Code を紹介し、開発プロセスを最適化します。 このコースの最後には、GitHub Actions を使用してデプロイパイプラインを自動化し、Databricks Asset Bundles で CI/CD ワークフローを強化する方法を紹介します

このコースを修了すると、Databricks アセットバンドルを使用して Databricks プロジェクトのデプロイを自動化し、DevOps プラクティスを通じて効率を向上させることができるようになります。

Languages Available: English | 日本語 | Português BR | 한국어

Paid
4h
Lab
Professional
Data Engineer

DevOps Essentials for Data Engineering - Japanese

このコースでは、Databricks を使用するデータエンジニア向けに特別に設計された、ソフトウェアエンジニアリングのベストプラクティスと DevOps の原則について説明します。 参加者は、コード品質、バージョン管理、ドキュメンテーション、テストなどの主要なトピックで強力な基盤を構築します。 このコースではDevOpsに重点を置き、コアコンポーネント、利点、およびデータエンジニアリングワークフローの最適化における継続的インテグレーションと継続的デリバリー(CI/CD)の役割について説明します

PySpark でモジュール性の原則を適用して、再利用可能なコンポーネントを作成し、コードを効率的に構造化する方法を学習します。 実践的な経験には、pytest フレームワークを使用した PySpark 関数の単体テストの設計と実装、その後の DLT と Workflows を使用した Databricks データパイプラインの統合テストが含まれ、信頼性を確保します

このコースでは、Databricks Git フォルダーを使用した継続的インテグレーションのプラクティスの統合など、Databricks 内の基本的な Git 操作についても説明します。 最後に、REST API、CLI、SDK、Databricks アセットバンドル (DAB) など、Databricks アセットのさまざまなデプロイ方法の概要を説明し、パイプラインをデプロイして管理する手法に関する知識を身に付けます

このコースを修了すると、ソフトウェアエンジニアリングとDevOpsのベストプラクティスに習熟し、スケーラブルで保守可能、かつ効率的なデータエンジニアリングソリューションを構築できるようになります。

Languages Available: English | 日本語 | Português BR | 한국어

Paid
4h
Lab
Associate

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.