オフラインLLM評価:Databricks上での段階的なGenAIアプリケーション評価
背景 RAG(Retrieval-Augmented Generation)がAIを駆使したアプリケーションとの関わり方に革命をもたらす時代において、これらのシステムの効率性と有効性を確保することは、かつてないほど不可欠なことである。DatabricksとMLflowはこの革新の最前線にあり、GenAIアプリケーションの重要な評価のための合理化されたソリューションを提供している。 このブログポストでは、Databricks Data Intelligence Platformを活用いて、GenAIアプリケーションの3つのコアコンポーネント(プロンプト、検索システム、Foundation LLM)の品質を強化および評価し、GenAIアプリケーションの継続的な品質を確保するためのするためにシンプルで効果的なプロセスを紹介する。 ユースケース MLflowのドキュメントの質問に回答し、その結果を評価するQAチャットボットを作成する。 Databricksで外部モデルを設定する Databricksの モデルサービング