メインコンテンツへジャンプ
ページ 1

Databricks 上の大規模言語モデルで放射線科のワークフローを自動化

放射線学は、X 線、コンピュート断層撮影 (CT)、磁気共鳴画像 (MRI)、核医学、陽電子放出断層撮影 (PET)、超音波などの医療用画像診断手順を通じて病気を診断し治療する重要な要素です。 典型的な放射線科ワークフローには、特にプロトコル作成プロセスを中心に手作業のステップが含まれます。 大規模言語モデル (LLM) を使用すると、このような管理上の負担の一部を自動化できます。 現在の状況: 放射線科ワークフロー さらに詳しく調べるために、典型的な放射線科のワークフローについて詳しく見てみましょう。 最初に、患者は最近の脳震盪の影響が長引くと報告し、医療機関を受診することがあります。 医療提供者は、患者のメモを電子カルテ(EHR)にまとめ、CTスキャンなどの画像検査を依頼します。 その後、放射線科医が臨床記録を確認し、「造影剤付き脳のCT」などの適切なプロトコルラベルを注文に割り当てます。 このラベルは、画像技術者が注文を実行する際の指針となり、検査とその後の結果の確認につながります。 放射線科ワークフローに