メインコンテンツへジャンプ
ページ 1

DatabricksデータインテリジェンスプラットフォームとHiddenLayerモデルスキャナによるサードパーティ製モデルの安全なデプロイ

イントロダクション 組織が機械学習、AI、および大規模言語モデル(LLM)を導入する能力は、「 モデル動物園 」の普及のおかげで近年加速しています。これは、画像認識、自然言語処理、社内チャットボット、アシスタントなどに関する最先端の能力を備えた事前トレーニング済みのモデル/LLM が含まれる Hugging Face や TensorFlow Hub などのパブリックリポジトリを指します。 サードパーティモデルのサイバーセキュリティリスク モデル動物園は便利ですが、悪意のある行為者が悪意のある利益のためにパブリックリポジトリのオープンな性質を悪用する可能性があります。 例えば、私たちのパートナーである HiddenLayer 社による最近の研究では、 公開されている機械学習モデルがランサムウェアによって武器化される可能 性や、攻撃者が HuggingFaceのサービス を乗っ取り、プラットフォームに提出されたモデルをハイジャックする可能性を特定しました。 これらのシナリオは、トロイの木馬によるモデルと、モデルのサ

SIEM検知ルールの進化:シンプルから洗練への旅

サイバー脅威とそれに対抗するツールはより洗練されたものになっています。 SIEMは20年以上の歴史があり、その間に大きく進化してきました。 当初はパターンマッチングと閾値ベースのルールに依存していたSIEMは、より高度なサイバー脅威に対処するために分析能力を向上させました。 「検知成熟度曲線」と呼ばれるこの進化は、セキュリティ運用が単純な警告システムから脅威の予測分析が可能な高度なメカニズムへと移行したことを示しています。 このような進歩にもかかわらず、最新のSIEMは、大規模なデータセットや長期的な傾向分析、機械学習による検出のためのスケーリングという課題に直面しており、複雑化する脅威要因の検出と対応に対する組織の能力が問われています。 そこでDatabricksがサイバーセキュリティチームを支援します。 Apache Spark™、MLflow、およびDeltaテーブルを搭載したDatabricksの統合アナリティクスは、企業の最新のビッグデータと機械学習のニーズを満たすために、コスト効率よく拡張できます。

サイバーセキュリティアプリケーション向けDatabricks Lakehouseプラットフォーム

翻訳: Masahiko Kitamura 具体的なコードはIOCマッチングのソリューションアクセラレータの GitHub reo を参照ください。また、本ソリューションのPOC・トライアルについては [email protected] までご連絡ください。 金融機関、医療機関、政府機関がデータをクラウドに移行し、IoTセンサーや相互接続されたデバイスが増加しているため、サイバーセキュリティは依然として重要なデータ課題となっています。地政学的な脅威が続く中、企業は、大量のデータの処理、複雑なデータ処理タスク(人工知能や機械学習などの高度な分析機能を含む)のサポート、費用対効果の高い拡張が可能なDatabricks Lakehouseプラットフォームをサイバー業務に採用しています。Databricks Lakehouseプラットフォームは、データ、アナリティクス、AIを単一のプラットフォームで統合した、サイバーセキュリティ業界の隠れた標準基盤になっています。 企業やサイバーセキュリティベンダー