メインコンテンツへジャンプ
ページ 1

長いシーケンスでLlama 3.1をファインチューニング

私たちは、 Mosaic AIモデルトレーニング が、Meta Llama 3.1モデルファミリーの微調整時に131Kトークンの全文脈長をサポートするようになったことを発表することを嬉しく思います。この新機能により、Databricksの顧客は、長い文脈長のエンタープライズデータを使用して特化したモデルを作成することで、さらに高品質なRetrieval Augmented Generation(RAG)またはツール使用システムを構築することができます。 LLMの入力プロンプトのサイズは、その コンテキスト長 によって決定されます。お客様は特にRAGやマルチドキュメント分析のようなユースケースでは、短いコンテキスト長に制限されることが多いです。Meta Llama 3.1モデルは、コンテキスト長が131Kトークンと長いです。比較すると、『グレート・ギャツビー』は 約72Kトークン です。Llama 3.1モデルは、大量のデータコーパスを理解することを可能にし、RAGでのチャンキングや再ランキングの必要性を減らすか、