メインコンテンツへジャンプ
ページ 1

Databricksワークフローにおけるコントロールフロー強化のお知らせ!

多段階のデータやAIプロセス、パイプラインをオーケストレーションする上で重要な要素は、制御フローの管理です。 このため、 Databricks Workflowsの コントロールフロー機能に投資を続けています。この機能により、お客様は複雑なワークフローをより適切に制御し、高度なオーケストレーションシナリオを実装することができます。 数ヶ月前、私たちは ワークフローにモジュール式のオーケストレーションを 定義する機能を導入しました。これにより、お客様は複雑なDAGを分解して、より良いワークフロー管理、再利用性、チーム間でのパイプラインの連鎖を実現することができます。 本日、Lakehouseのオーケストレーションにおける次のイノベーションを発表できることを嬉しく思います。 タスクの条件付き実行 条件実行は、"If/else 条件タスクタイプ" と、"Run if dependencies" の2つの機能に分けることができます。これらを組み合わせることで、ユーザーはワークフローで分岐ロジックを作成し、パイプライン内の

Databricks UnityカタログにおけるAI生成ドキュメントのパブリックプレビューを発表

翻訳:Saki Kitaoka. - Original Blog Link 本日、 Databricks Unity Catalog のAI生成ドキュメンテーションのパブリックプレビューを発表します。この機能は、生成AIを活用し、テーブルやカラムの説明やコメントの追加を自動化することで、組織のデータやAI資産の文書化、キュレーション、ディスカバリーを簡素化します。 今日のデータ主導の状況では、データは情報に基づいた意思決定の基盤であり、チームワークの強固な基盤を確立するには、シームレスなデータの発見性と明確性が重要です。しかし、データチームはしばしば、包括的なデータ説明がないために文脈が理解できないという重大な課題に直面します。この不足は、ユーザーがデータの潜在能力を十分に活用する妨げとなるため、このギャップを埋める簡素なデータ記述の必要性が強調されています。 さらに、表や列の適切なメタデータや説明文がないことが問題を複雑にしており、その結果、いくつかの問題が生じています: データの曖昧さ : データの曖昧さ:表