メインコンテンツへジャンプ
ページ 1

機械学習プラットフォームの選択における 3 つの原則

June 24, 2021 Joseph Bradley による投稿 in
機械学習のプラットフォーム、オペレーション、ガバナンスに関するブログシリーズの第二弾です。Rafi Kurlansik によるこのシリーズの第一弾、「Need for Data-centric ML Platforms」(データセントリックな機械学習プラットフォームの必要性)は こちら からお読みいただけます。 某サイバーセキュリティ企業でデータプラットフォーム部門のシニアディレクターを務めるお客様から、次のようなコメントをいただきました。 「機械学習のツールは目まぐるしく進化している。将来的にも投資を無駄にしない方法はあるのだろうか?」 これは多くの組織に共通する課題です。機械学習(ML)は、他の技術と比較して進化のスピードが速く、ライブラリの多くが開発後間もない段階で共有され、Databricks を含む多くのベンダーがそれぞれツールやプラットフォームを宣伝しています。会話を進めるうちに、このお客様は、データサイエンスや機械学習の取り組みへの投資を無駄にしない方法があることに気づきます。 変化し続ける技術をサ