メインコンテンツへジャンプ
ページ 1

未来を守る:生成型AIの時代におけるAIエージェントシステムを保護するAIゲートウェイの役割

未来:ルールエンジンから指示に従うAIエージェントシステムへ 銀行や保険などのセクターでは、ルールエンジンは長い間、意思決定において重要な役割を果たしてきました。銀行口座の開設資格を決定したり、保険請求を承認したりするかどうか、これらのエンジンは事前に定義されたルールを適用してデータを処理し、自動的な決定を下します。これらのシステムが失敗すると、人間の主題専門家(SMEs)が例外処理を行います。 しかし、指示に従うGenAIモデルの出現は、ゲームを変えることになるでしょう。静的なルールエンジンに頼るのではなく、これらのモデルは特定のルールデータセットで訓練され、複雑な決定を動的に行うことができます。例えば、指示に従うモデルは、リアルタイムで顧客の金融履歴を評価し、ローン申請を承認または拒否することができます。ハードコーディングされたルールは必要ありません。データに基づいて決定を下す訓練されたモデルだけです。 この変化は、より大きな柔軟性と効率性をもたらしますが、重要な問いを提起します: 伝統的なルールエンジンを置

Databricks Data Intelligence Platformのためのセキュリティベストプラクティス

Databricksでは、データが最も価値のある資産の一つであることを理解しています。当社の製品とセキュリティチームは協力して、セキュリティリスクに対抗し、コンプライアンスの義務を満たすことができるエンタープライズグレードの データインテリジェンスプラットフォーム を提供します。過去1年間で、 Azure Private Link for Databricks SQL Serverless によるデータアクセスの保護、 Azure firewall support for Workspace storage によるデータのプライバシー保護、 Azure confidential computing による使用中のデータ保護、 FedRAMP...

Databricksデータインテリジェンスプラットフォームで実現する責任あるAI

人工知能(AI)の変革的な可能性は明白です。生産性の向上、コスト削減、そしてあらゆる業界での意思決定の改善に至るまで、AIはバリューチェーンを革新しています。特に2022年後半からの生成AIの登場、特にChatGPTのリリース以来、この技術に対する市場の関心と熱意はさらに高まっています。 McKinsey and Co. によると、生成AIの経済的潜在能力、つまりAIによって可能になるユースケースや労働者の生産性は、世界経済に17兆ドルから26兆ドルの価値をもたらす可能性があるとされています。 この結果として、ますます多くの企業が、競争優位性を築くためにAIをビジネス戦略の中心に据えようとしています。 ゴールドマン・サックス 経済研究所は、2025年までにAIへの投資が米国で1,000億ドル、世界全体で2,000億ドルに達する可能性があると予測しています。 しかし、企業がAIを導入する際には、AIの目標に対する信頼を確立するために、品質、セキュリティ、およびガバナンスをカバーする責任あるAIの実践を優先することが

Databricks AIセキュリティフレームワーク(DASF)の紹介

Databricks AI Security Framework(DASF)バージョン1.0 のホワイトペーパーを発表できることを嬉しく思います! このフレームワークは、ビジネス、IT、データ、AI、セキュリティの各グループのチームワークを向上させるように設計されています。 本書は、実際の攻撃観察に基づくAIセキュリティリスクの知識ベースをカタログ化することで、AIとMLの概念を簡素化し、AIセキュリティに対する徹底的な防御アプローチを提供するとともに、すぐに適用できる実践的なアドバイスを提供します。 機械学習(ML)と生成AI(GenAI)は、イノベーション、競争力、従業員の生産性を高めることで、仕事の未来を変革します。 しかし、企業は人工知能(AI)技術を活用してビジネスチャンスを得ると同時に、データ漏洩や法規制の不遵守など、潜在的なセキュリティおよびプライバシーリスクを管理するという二重の課題に取り組んでいます。 このブログでは、DASFの概要、組織のAIイニシアチブを保護するためにDASFを活用する方法、

AIセキュリティリスクの管理:CISOのための新しいワークショップの紹介

AIの導入は、ほとんどの企業にとって必要不可欠である Machine Learning(ML)とジェネレーティブAI(GenAI)は、仕事の未来に革命を起こそうとしている。組織は、AIがイノベーションの構築、競争力の維持、従業員の生産性向上に役立っていることを理解している。同様に、企業は自社のデータがAIアプリケーションに競争上の優位性をもたらすことを理解している。これらのテクノロジーは、組織にとってチャンスであると同時に潜在的なリスクでもある。 顧客との会話では、データ損失、データポイズニング、モデルの盗難、コンプライアンスや規制の課題といったリスクが頻繁に挙げられている。最高情報セキュリティ責任者(CISO)は、こうしたリスクを迅速に軽減しながら、ビジネスのニーズに適応する必要に迫られている。しかし、CISOがビジネスにノーと言えば、チームプレーヤーではなく、企業を第一に考えているとみなされる。逆に、リスクのあることにイエスと言えば、不注意だと思われる。CISOは、ビジネスの成長、多様化、実験に対する意欲に追