メインコンテンツへジャンプ
ページ 1

AIモデル共有のGAを発表

このブログへの貴重な洞察と貢献に対して、Daniel Benito(CTO、Bitext)、Antonio Valderrabanos(CEO、Bitext)、Chen Wang(リードソリューションアーキテクト、AI21 Labs)、Robbin Jang(アライアンスマネージャー、AI21 Labs)、Alex Godfrey(パートナーマーケティングリード、AI21 Labs)に特別な感謝を述べます。 Databricks Delta SharingとDatabricksマーケットプレイス内のAIモデル共有の一般提供をお知らせすることをうれしく思います。このマイルストーンは、 2024年1月のパブリックプレビュー発表 に続いています。Public Previewのローンチ以来、我々は新たなAIモデル共有の顧客やプロバイダー、例えば Bitext 、 AI21 Labs 、Rippleと共に、AIモデル共有をさらにシンプルにするために取り組んできました。 Delta Sharingを使用して、AIモデルを簡単

DatabricksとPineconeで実現する最先端RAGチャットボット構築

お客様と対話するインテリジェントなボットをビジネスに導入することを想像してみてください。チャットボットは一般的に、顧客と対話し、彼らに助けや情報を提供するために使用されます。しかし、通常のチャットボットは複雑な質問に答えるのに苦労することがあります。 RAG とは Retrieval Augmented Generation (RAG) は、チャットボットが難しい質問を理解し、応答する能力を向上させる方法です。この生成AIデザインパターンは、大規模言語モデル(LLM)と外部知識の取得を組み合わせています。 これにより、リアルタイムデータを生成プロセス(推論時間)中にAIアプリケーションに統合することが可能になります。この文脈情報をLLMに提供することで、RAGは生成された出力の精度と品質を大幅に向上させます。 RAGを使用する利点の一部は次のとおりです: AIアプリケーションの精度と品質の向上: RAGがLLMにリアルタイムデータをコンテキストとして提供することで、AIアプリケーションの精度と品質が向上します。