メインコンテンツへジャンプ
ページ 1

データインテリジェンスと評価インテリジェンスを統合する:Databricks VenturesがGalileoに投資

私たちの顧客は、生成型AIを試験から本番環境へ移行させる最大の課題は「 測定問題 」だと言っています。これらのシステムを測定し、信頼するのは難しいです。LLMプロバイダーは制御テストでのパフォーマンス結果を共有しますが、企業はモデルを変更し、自身のデータを追加します。これにより、現実世界での評価が難しくなります。 現在のAIの状況では、ほとんどの組織が単一の呼び出しLLMアプリケーションから AIシステム へと移行しています。これらのシステムは、複数のツール、検索戦略、推論ステップ、ビジネスルール、およびLLMを使用して、ユーザープロンプトから単一の出力を生成します。フードの下ではたくさんのことが進行中です。 Databricksでは、顧客のデータと、そのビジネスのユニークな特性に合わせて調整された強力なAIモデルを組み合わせることで、分析とインテリジェントアプリケーションへのアクセスを民主化しています。私たちは、一般的なインテリジェンスから、私たちがデータインテリジェンスと呼ぶものへのシフトをリードしています。

AIモデル共有のGAを発表

このブログへの貴重な洞察と貢献に対して、Daniel Benito(CTO、Bitext)、Antonio Valderrabanos(CEO、Bitext)、Chen Wang(リードソリューションアーキテクト、AI21 Labs)、Robbin Jang(アライアンスマネージャー、AI21 Labs)、Alex Godfrey(パートナーマーケティングリード、AI21 Labs)に特別な感謝を述べます。 Databricks Delta SharingとDatabricksマーケットプレイス内のAIモデル共有の一般提供をお知らせすることをうれしく思います。このマイルストーンは、 2024年1月のパブリックプレビュー発表 に続いています。Public Previewのローンチ以来、我々は新たなAIモデル共有の顧客やプロバイダー、例えば Bitext 、 AI21 Labs 、Rippleと共に、AIモデル共有をさらにシンプルにするために取り組んできました。 Delta Sharingを使用して、AIモデルを簡単

DatabricksとPineconeで実現する最先端RAGチャットボット構築

お客様と対話するインテリジェントなボットをビジネスに導入することを想像してみてください。チャットボットは一般的に、顧客と対話し、彼らに助けや情報を提供するために使用されます。しかし、通常のチャットボットは複雑な質問に答えるのに苦労することがあります。 RAG とは Retrieval Augmented Generation (RAG) は、チャットボットが難しい質問を理解し、応答する能力を向上させる方法です。この生成AIデザインパターンは、大規模言語モデル(LLM)と外部知識の取得を組み合わせています。 これにより、リアルタイムデータを生成プロセス(推論時間)中にAIアプリケーションに統合することが可能になります。この文脈情報をLLMに提供することで、RAGは生成された出力の精度と品質を大幅に向上させます。 RAGを使用する利点の一部は次のとおりです: AIアプリケーションの精度と品質の向上: RAGがLLMにリアルタイムデータをコンテキストとして提供することで、AIアプリケーションの精度と品質が向上します。