メインコンテンツへジャンプ
ページ 1

シンプル・高速・スケーラブル!Mosaic AIで実現するバッチ LLM 推論

長年にわたり、企業は膨大な量の非構造化テキストデータ(文書、報告書、メールなど)を蓄積してきましたが、そこから意味のあるインサイトを抽出することは依然として課題でした。現在、大規模言語モデル(LLM)を活用することで、このデータをスケーラブルに分析する方法が実現しており、バッチ推論が最も効率的な解決策となっています。しかし、多くのツールはオンライン推論に焦点を当てており、バッチ処理機能の充実にはまだ課題が残されています。 本日、大規模文書に LLM を適用するための、よりシンプルで高速、かつスケーラブルな方法を発表します。これまでのようにデータを CSV ファイルとして 未管理の場所にエクスポートする必要はありません。今では、Unity Catalog による完全なガバナンスのもと、ワークフロー内でバッチ推論を直接実行できます。 以下の SQL クエリを記述し、ノートブックやワークフローで実行するだけで完了します。 ai_query を使用すれば、前例のない速度で大規模なデータセットを処理することが可能になり、最

オープンソースAIの新標準:DatabricksでMeta Llama 3.1が利用可能に

当社は Meta と提携して Databricks 上で Llama 3.1 シリーズのモデルをリリースし、強力なオープン モデルの標準をさらに前進させられることを嬉しく思います。Llama 3.1 を使用すると、企業は所有権やカスタマイズを犠牲にすることなく、最高品質の GenAI アプリを構築できるようになります。 Databricks では、イノベーションを加速し、オープン言語モデルを使用してより安全なシステムを構築するという Meta の取り組みに賛同しており、新しいモデル スイートを初日からエンタープライズのお客様に提供できることを嬉しく思っています。 Llama 3.1 を Databricks 内にネイティブに統合し、顧客がこれを使用してアプリケーションを簡単に構築できるようにしました。...

Mixtral 8x7B と Databricks モデルサーヴィングのご紹介

reviewed by saki.kitaoka 本日、Databricksは モデルサーヴィングで Mixtral 8x7Bをサポートすることを発表します。Mixtral 8x7BはスパースなMixture of Experts(MoE)オープン言語モデルで、多くの最先端モデルを凌駕するか、あるいはそれに匹敵します。最大32kトークン(約50ページのテキスト)の長いコンテキストを処理する能力を持ち、そのMoEアーキテクチャはより高速な推論を提供するため、RAG(Retrieval-Augmented Generation)やその他の企業ユースケースに理想的です。 Databricks Model Servingは、 プロダクショングレードのエンタープライズ対応プラットフォーム 上で、オンデマンド価格でMixtral 8x7Bへの即時アクセスを提供します。毎秒数千のクエリをサポートし、シームレスな ベクターストア 統合、自動化された品質 モニタリング 、統合 ガバナンス 、アップタイムのSLAを提供します。このエ

ファウンデーションモデル機能でGenAIアプリをより速く構築する方法

先週 発表した RAG( Retrieval Augmented Generation )に続き、Model Servingのメジャーアップデートを発表できることを嬉しく思います。Databricks Model Servingは 統一されたインターフェイス を提供するようになり、すべてのクラウドとプロバイダで基盤モデルの実験、カスタマイズ、プロダクション化が容易になりました。これは、組織固有のデータを安全に活用しながら、ユースケースに最適なモデルを使用して高品質のGenAIアプリを作成できることを意味します。 新しい統一インターフェースにより、Databricks上であろうと外部でホストされていようと、すべてのモデルを一箇所で管理し、単一のAPIでクエリすることができます。さらに、Llama2 や MPT モデルなどの一般的な大規模言語モデル (LLM) に Databricks 内から直接アクセスできる Foundation Model API...

Databricks Lakehouse AIでLlama 2 Foundation Modelsが利用可能になりました!

翻訳:Saki Kitaoka. - Original Blog Link 私たちは、Meta AIのLlama 2 チャットモデル ( Meta AI’s Llama 2 ) が Databricks Marketplace で利用可能になり、プライベートモデルのサービングエンドポイントに微調整してデプロイできることを発表できることを嬉しく思います。Databricksマーケットプレイスは、クラウド、リージョン、プラットフォーム間でデータアセット(データセットやノートブックを含む)を共有および交換できるオープンなマーケットプレイスです。既にマーケットプレイスで提供されているデータアセットに加え、この新しいリスティングは、7から70ビリオンのパラメータを持つLlama 2のチャット指向の大規模言語モデル(LLM)、およびUnityカタログの集中ガバナンスと系統追跡へのインスタントアクセスを提供します。各モデルはMLflowにラップされており、Databricksノートブックで MLflow Evaluation.

Databricks Model Servingを使用したプライベートLLMのデプロイ

翻訳:Saki Kitaoka. - Original Blog Link Databricks Model ServingのGPUおよびLLM最適化サポートのパブリックプレビューを発表できることを嬉しく思います!この発表により、LLMやVisionモデルを含む、あらゆるタイプのオープンソースまたは独自のカスタムAIモデルをLakehouseプラットフォーム上にデプロイできるようになります。Databricks Model Servingは、LLM Serving用にモデルを自動的に最適化し、設定なしでクラス最高のパフォーマンスを提供します。 Databricks Model Servingは、統合データおよびAIプラットフォーム上で開発された初のサーバーレスGPUサービング製品です。これにより、データの取り込みから微調整、モデルのデプロイ、モニタリングに至るまで、GenAIアプリケーションの構築とデプロイをすべて単一のプラットフォーム上で行うことができます。 Azure上のユーザーは、Model Serving

MetaのLlama 2とDatabricksでジェネレーティブAIアプリを構築する

翻訳:Junichi Maruyama. - Original Blog Link 本日、Meta社は最新の大規模言語モデル(LLM)である Llama 2 をオープンソースとして公開し、商用利用を開始した1。これはオープンソースAIにとって重要な進展であり、ローンチ・パートナーとしてMetaと協力できたことはエキサイティングでした。私たちは、Llama 2のモデルを事前に試すことができ、その能力とあらゆる可能性のあるアプリケーションに感銘を受けました。 今年初め、メタ社は LLaMA をリリースし、オープンソース(OSS)LLMのフロンティアを大きく前進させた。v1モデルは商用利用はできないが、生成AIとLLMの研究を大きく加速させた。 Alpaca と Vicuna は、高品質な指示フォローとチャットデータがあれば、LLaMAをChatGPTのように振る舞うようにファインチューニングできることを実証した。この研究結果に基づいて、Databricksは databricks-dolly-15k 命令追跡データセ

Free Dolly: 世界初の真にオープンな指示でチューニングされたLLM

Original Post: Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM 翻訳: Takaaki Yayoi 2週間前、ChatGPTのような人間のインタラクティブ性(指示追従性)を示すように、$30以下でトレーニングされた大規模言語モデル(LLM)である Dolly をリリースしました。本日、 研究と商用利用 にライセンスされた、人の手で生成された指示データセットでファインチューンされた、史上初のオープンソース、指示追従LLMである Dolly 2.0 をリリースします。...

Dolly:オープンなモデルで ChatGPT の魔法を民主化

概要 Databricks では、従来のオープンソースの大規模言語モデル(LLM)を利用して ChatGPT のような命令追従能力を実現できることを確認しました。高品質な学習データを使用して 1 台のマシンで 30 分ほどトレーニングするだけです。また、命令追従能力の実現には、必ずしも最新のモデルや大規模なモデルは必要ないようです。GPT-3 のパラメータ数が 1750 億であるのに対し、私たちのモデルでは 60 億です。私たちはモデル Dolly のコードをオープンソース化しています。Dolly を Databricks 上でどのように再作成できるか、今回のブログではこのことについて詳しく解説します。 Dolly のようなモデルは LLM の民主化を促進します。LLM...

Databricks の MLflow モデルレジストリと CI/CD 機能で MLOps を簡素化

MLflow は、実験のメトリクスやパラメータ、アーティファクトの追跡、モデルをバッチまたはリアルタイムでサービングシステムに展開する機能を提供し、組織における機械学習(ML)ライフサイクルの管理を支援します。 MLflow モデルレジストリ は、実験段階からデプロイメントへのハブとして、モデル展開のライフサイクルを管理する中央リポジトリを提供します。 MLOps 、機械学習ライフサイクル管理において、継続的インテグレーションと継続的デプロイメント(CI/CD)のプロセスは極めて重要です。このブログでは、全ての Databricks ユーザーが利用できるタグやコメント、Webhook 通知機能など、CI/CD プロセスを円滑にする Databricks の MLflow モデルレジストリの新機能をご紹介します。 AWS 、 Azure との連携についてはそれぞれのページをご覧ください。 なお、このブログでは、Data+AI サミット 2020 で一般提供を発表した...