メインコンテンツへジャンプ
ページ 1

Databricksで PyTorch を習得する 7 つの理由

April 14, 2021 Jules Damji による投稿 in
新しい概念、言語、システムについて学ぶ場合、どのような学習方法が有効でしょうか。新しいタスクを学ぶ際に、既に習得しているスキルとの類似点を探すのではないでしょうか。 学習者に好まれる学習過程の特性として、「親しみやすさ」、「わかりやすさ」、「シンプル」、の 3 つの共通点があります。これまでに習得した知識との共通点による親しみやすさは、新たな知識の習得に対する敷居を低くします。わかりやすさにより、内容を把握する際の負担が最小限になります。そして、シンプルであるということは、未知の事柄を取り入れる際の問題が少なく、新しい概念、言語、システムの習得による成果を高めます。 Aside from being popular among researchers, gaining adoption by machine learning practitioners in production, and having a vibrant community...

Databricks の MLflow モデルレジストリと CI/CD 機能で MLOps を簡素化

MLflow は、実験のメトリクスやパラメータ、アーティファクトの追跡、モデルをバッチまたはリアルタイムでサービングシステムに展開する機能を提供し、組織における機械学習(ML)ライフサイクルの管理を支援します。 MLflow モデルレジストリ は、実験段階からデプロイメントへのハブとして、モデル展開のライフサイクルを管理する中央リポジトリを提供します。 MLOps 、機械学習ライフサイクル管理において、継続的インテグレーションと継続的デプロイメント(CI/CD)のプロセスは極めて重要です。このブログでは、全ての Databricks ユーザーが利用できるタグやコメント、Webhook 通知機能など、CI/CD プロセスを円滑にする Databricks の MLflow モデルレジストリの新機能をご紹介します。 AWS 、 Azure との連携についてはそれぞれのページをご覧ください。 なお、このブログでは、Data+AI サミット 2020 で一般提供を発表した...

データサイエンティスト向け:Databricks Notebook を使いこなす 10 のヒント

October 29, 2020 Jules Damji による投稿 in
「最高のアイディアにはシンプルなものがある」という格言があるように、たとえ小さくても大きな違いを生むことがあります。今年行った数回のリリースの過程で、Databricks をシンプルにするために、大きな違いにつながる小さな機能を Notebook に追加しました。 このブログと 付随する Notebook では、簡単なマジックコマンドを紹介し、データサイエンティストの開発時間を短縮し、開発者のエクスペリエンスを向上させるために Notebook に追加したユーザーインターフェースの機能を解説します。 強化された機能には、次のものが含まれます。 %pip install %conda env export および update %matplotlib inline %load_ext tensorboard および...

MLflow モデルレジストリをエンタープライズ機能に拡張

Databricks の MLflow モデルレジストリ にエンタープライズレベルの新機能が追加されました。 Databricks の統合分析プラットフォーム をご利用いただいている場合、MLflow モデルレジストリはデフォルトで有効になります。 このブログでは、モデル管理を一元化するハブとしての MLflow モデルレジストリのメリットをご紹介し、組織内のデータチームによるモデル共有やアクセス制御、モデルレジストリ API を活用した統合や検証について解説します。 MLflow によるハブの一元化が、モデルライフサイクル管理のコラボレーションを可能に MLflow には、実験の一部としての メトリクス 、 パラメータ 、 アーティファクトをトラッキングする機能...