メインコンテンツへジャンプ
ページ 1

Apache Spark 構造化ストリーミングにおけるステートフルパイプラインの最新パフォーマンス改善へのディープダイブ

この投稿は、ステートフル・パイプラインの最新のパフォーマンス改善に関する2部構成のシリーズの第2部です。 このシリーズの最初の部分は、 Apache Spark 構造化ストリーミングにおけるステートフルパイプラインのパフォーマンス改善 でカバーされています。 Project Lightspeedの更新ブログ では、ステートフルパイプラインに追加したさまざまなパフォーマンス改善の概要を紹介しました。 このセクションでは、パフォーマンス分析中に観察されたさまざまな問題を掘り下げ、それらの問題に対処するために実施した具体的な機能強化の概要を説明します。 RocksDBステートストア・プロバイダの改善 メモリ管理 RocksDBは主に メモリ を memtables 、ブロックキャッシュ、その他のピン留めブロックに使用します。以前は、マイクロバッチ内のすべての更新は、 WriteBatchWithIndex を 使用してメモリにバッファリングされていました。 さらに、ユーザーは書き込みバッファとブロックキャッシュの使用に

Apache Spark 構造化ストリーミングにおけるステートフルパイプラインのパフォーマンス改善

イントロダクション Apache Spark™ の 構造化ストリーミング は、Spark SQLエンジン上に構築された、スケーラビリティと耐障害性を提供する人気のオープンソースストリーム処理プラットフォームです。 Databricksレイクハウスプラットフォーム上のほとんどの増分的および ストリーミングワークロード は、 Delta Live Tables および Auto Loader を含む構造化ストリーミングを利用しています。 ここ数年、あらゆる業界における多様なユースケースにおいて、構造化ストリーミングの使用と採用が 飛躍的に伸びて います。 Databricksでは、1週間に1,400万以上の構造化ストリーミングジョブが実行されており、その数は年間2倍以上のペースで増加しています。 ほとんどの構造化ストリーミングのワークロードは、 分析ワークロードと運用ワークロード...