メインコンテンツへジャンプ
ページ 1

時系列データの予測力を解き放て!

December 5, 2024 リン・ユアンマギー・ワン による投稿 in
時系列予測は、将来のトレンド、需要、ユーザー行動を予測することで、データに基づく意思決定を目指す企業にとって極めて重要です。たとえば、小売業界のDatabricks顧客は、これらのモデルを活用して、季節や地域ごとの製品需要を予測し、在庫管理を最適化しています。同様に、エネルギー企業は消費パターンを予測して供給と需要のバランスを効率的に保ち、コスト削減や電力網の安定性を確保しています。 Databricksの顧客は、クラスタの管理やデータおよびモデルガバナンスの複雑さに煩わされることなく、Data Intelligence Platformを活用して洞察を提供することに集中したいと考えています。また、最高品質の予測を実現するために、最先端のモデルアーキテクチャへのアクセスを求めています。 これらの課題に対応するため、Mosaic AIモデルトレーニングに新機能として 時系列予測 を導入することを発表できることを嬉しく思います。この新しいAutoML製品は、柔軟性、ガバナンス、パフォーマンスを強化し、企業が時系列デー

Databricks上で高度にスケーラブルなディープ推薦システムを訓練する(パート1)

推薦システム(RecSys)は、さまざまなプラットフォームでパーソナライズされたコンテンツの提案を支える現代のデジタル体験の不可欠な部分となっています。これらの洗練されたシステムとアルゴリズムは、ユーザーの行動、好み、アイテムの特性を分析し、興味のあるアイテムを予測し、推奨します。ビッグデータと機械学習の時代において、推薦システムは単純な協調フィルタリングのアプローチから、深層学習技術を活用する複雑なモデルへと進化しています。 これらの推薦システムをスケールすることは、特に何百万人ものユーザーや何千もの製品を扱う場合には、困難な場合があります。これを行うには、コスト、効率、精度のバランスを見つける必要があります。 このスケーラビリティの問題に対処する一般的なアプローチは、2段階のプロセスを含みます:初期の効率的な「広範な検索」に続いて、最も関連性の高いアイテムに対するより計算的に集中的な「狭範な検索」です。例えば、映画の推薦では、効果的なモデルはまず検索空間を数千からユーザーごとに約100項目に絞り込み、その後、