メインコンテンツへジャンプ
ページ 1

Databricksにおけるマルチモデル予測のためのフレームワーク

はじめに 時系列予測は、多くの企業における在庫管理や需要管理の基盤となっています。過去のデータと予測される条件を組み合わせて、企業は売上や販売数量を予測し、期待される需要に応じてリソースを配分します。このような基本的な作業であるため、企業は常に予測の精度を向上させる方法を探求しています。これにより、適切なタイミングで適切な場所にちょうど良い量のリソースを配置し、資本の無駄遣いを最小限に抑えることができます。 多くの組織が直面する課題は、利用可能な予測手法の幅広さです。古典的な統計手法、一般化加法モデル、機械学習や深層学習に基づくアプローチ、そして最近では事前学習された生成的AIトランスフォーマーなど、選択肢が非常に多く、シナリオによってはある手法が他の手法よりも優れていることがあります。 多くのモデル開発者は、ベースラインのデータセットに対して予測精度の向上を主張しますが、実際にはドメイン知識やビジネス要件によって、選択肢は数種類に絞られます。その上で、実際のデータセットに適用し評価することで、どのモデルが最適か

生成AIを用いてブランドイメージに沿った画像を作成する

画像生成技術は、小売業や消費財メーカーに大きなメリットをもたらします。 生成モデルを使用することで、ユーザーのプロンプトから様式的な画像とフォトリアリスティックな画像の両方を生成することができ、マーケティング担当者やデザイナー、製品開発チームは、新しいアイデアやデザインを迅速かつ効果的に検討することができます。 このAI技術を使用するための主な要件は、ユーザーがコンセプトを明確に表現する能力です。 共通の目標に集中する個人からなる小さなチームは、AIにプロンプトを渡すことで、アイデアを評価したり、新しいアイデアを閃いたりするのに役立つビジュアライゼーションを生成できます。 このような技術によって促進されるプロセスでは、チームは先行投資コストを削減し、フィードバックまでの時間を短縮し、最終的には、新しい、革新的で差別化されたコンテンツやデザインコンセプトにつながる、より創造的なプロセスに従事することができます。 しかし、大量の一般的な画像で事前に訓練されたモデルを使用することは、あるまとまった画像を作成するのに適し

Part 1:Databricks Notebook と Azure DevOps で Databricks に CI/CD を実装

ブログ内に掲載されているコードの詳細は、 こちら からご覧ください。 このブログは、エンドツーエンドの MLOps ソリューションを Databricks Notebook と Repos API を使用して設定、構築する方法を解説するブログシリーズの Part 1 です。今回は、Notebook をベースとした Databricks における CI/CD(継続的インテグレーション/継続的デリバリ)フレームワークについて解説します。継続的インテグレーション(CI)は Microsoft Azure DevOps のエコシステムと、継続的デリバリ(CD)は...