メインコンテンツへジャンプ
ページ 1

AIをよりアクセシブルに:Databricks上のMeta Llama 3.3で最大80%のコスト削減!

企業が高品質なAIアプリを提供するエージェントシステムを構築するにつれて、私たちはお客様に最高のコスト効率を提供するための最適化を続けています。Meta Llama 3.3モデルが Databricks Data Intelligence Platform で利用可能になったことを発表することを嬉しく思います。また、Mosaic AIの Model Serving の価格と効率性に大幅な更新が加えられました。これらの更新により、推論コストが最大80%削減され、AIエージェントを構築したり、バッチLLM処理を行っている企業にとって、以前よりも大幅にコスト効率が向上します。 コスト削減80%: 新しいLlama 3.3モデルと価格の引き下げにより、大幅なコスト削減を実現します。 推論速度の向上: レスポンスが40%速くなり、バッチ処理時間が短縮されることで、より良い顧客体験と迅速な洞察を実現します。 新しいMeta Llama 3.3モデルへのアクセス: Metaの最新技術を活用して、品質とパフォーマンスを向上させま

Databricks上のMeta Llama 3.2の紹介:高速な言語モデルと強力なマルチモーダルモデル

Metaとのパートナーシップを通じて、Llama 3シリーズの最新モデルを Databricks Data Intelligence Platform でローンチすることを楽しみにしています。このLlama 3.2リリースの小型テキストモデルは、顧客が高速なリアルタイムシステムを構築することを可能にし、大型のマルチモーダルモデルは、Llamaモデルが視覚理解を獲得する初めてのマークです。 両方とも、Databricksの顧客が 複合AIシステム を構築するための重要なコンポーネントを提供し、これらのモデルを企業データに接続してデータインテリジェンスを可能にします。 Llamaシリーズの他のモデルと同様に、Llama 3.2モデルは今日からDatabricks Mosaic AIで利用可能で、あなたのデータで安全かつ効率的にチューニングすることができ、簡単にMosaic AI ゲートウェイ と エージェントフレームワーク にプラグインすることができます。 今日からDatabricksでLlama 3.2を使い始めま

オープンソースAIの新標準:DatabricksでMeta Llama 3.1が利用可能に

当社は Meta と提携して Databricks 上で Llama 3.1 シリーズのモデルをリリースし、強力なオープン モデルの標準をさらに前進させられることを嬉しく思います。Llama 3.1 を使用すると、企業は所有権やカスタマイズを犠牲にすることなく、最高品質の GenAI アプリを構築できるようになります。 Databricks では、イノベーションを加速し、オープン言語モデルを使用してより安全なシステムを構築するという Meta の取り組みに賛同しており、新しいモデル スイートを初日からエンタープライズのお客様に提供できることを嬉しく思っています。 Llama 3.1 を Databricks 内にネイティブに統合し、顧客がこれを使用してアプリケーションを簡単に構築できるようにしました。...

「DBRX」を発表: オープンソース大規模言語モデルのスタンダードとして

Databricksのミッションは、「組織が独自のデータを理解し、使用して独自のAIシステムを構築できるようにすること」です。つまりはすべての企業にデータインテリジェンスを提供することです。 本日、このミッションの達成へと大きく踏み出すため、 Mosaic Research チームによって構築された汎用の大規模言語モデル(LLM)であるDBRXをオープンソース化します。このモデルは、標準的なベンチマークにおいて既存のすべてのオープンソースモデルを凌駕しています。オープンソースモデルの限界を押し広げることが、すべての企業に対してカスタマイズ可能で透明性のある生成AIを可能にすると私たちは信じています。 私たちが「DBRX」に興奮するのには、3つの明確な理由があります。 まず第一に、言語理解、プログラミング、数学、論理において、LLaMA2-70B、Mixtral、Grok-1などのオープンソースモデルを圧倒しています(図1参照)。実際、私たちのオープンソースベンチマーク「 Gauntlet 」 には、30以上の異な

LilacがDatabricksに参画:生成AIの非構造化データ評価をシンプル化

本日、LilacがDatabricksに参画することを発表できることを嬉しく思います。 Lilacは、データサイエンティストが生成AIを中心にあらゆる種類のテキストデータセットを検索、クラスタリング、分析するためのスケーラブルでユーザーフレンドリーなツールです。 Lilacは、大規模言語モデル(LLM)の出力の評価から、モデルのトレーニングのための非構造化データセットの理解と準備まで、さまざまなユースケースに使用できます。 LilacのツールをDatabricksに統合することで、顧客は自社の企業データを使用した生産品質の生成AIアプリケーションの開発を加速させることができます。 生成AI時代のデータ探索と理解 データは、モデルのトレーニングのためのデータセットの準備、モデルの出力の評価、RAG(Retrieval-Augmented Generation)データのフィルタリングなど、LLMベースのシステムの中核をなすものです。 これらのデータセットを探索し理解することは、質の高い生成AIアプリを構築する上で非常

Databricksで高品質のRAGアプリケーションを作成する

RAG(Retrieval-Augmented-Generation )は、独自のリアルタイムデータを LLM(Large Language Model) アプリケーションに組み込む強力な方法として、急速に台頭してきた。 本日Databricksユーザーが企業データを使用して高品質な本番LLMアプリケーションを構築するためのRAGツール群を発表できることを嬉しく思う。 LLMは、新しいアプリケーションを迅速にプロトタイプ化する能力において、大きなブレークスルーをもたらした。 しかし、RAGアプリケーションを構築している何千もの企業と仕事をした結果、彼らの最大の課題は、これらのアプリケーションを 本番で用いることができる品質にすること であることがわかった。 顧客向けアプリケーションに要求される品質基準を満たすためには、AIの出力は正確で、最新で、そして企業のコンテキストを認識し、安全でなければならない。 高品質なRAGアプリケーションを構築するためには、開発者はデータとモデル出力の品質を理解するための豊富なツール