AIをよりアクセシブルに:Databricks上のMeta Llama 3.3で最大80%のコスト削減!
企業が高品質なAIアプリを提供するエージェントシステムを構築するにつれて、私たちはお客様に最高のコスト効率を提供するための最適化を続けています。Meta Llama 3.3モデルが Databricks Data Intelligence Platform で利用可能になったことを発表することを嬉しく思います。また、Mosaic AIの Model Serving の価格と効率性に大幅な更新が加えられました。これらの更新により、推論コストが最大80%削減され、AIエージェントを構築したり、バッチLLM処理を行っている企業にとって、以前よりも大幅にコスト効率が向上します。 コスト削減80%: 新しいLlama 3.3モデルと価格の引き下げにより、大幅なコスト削減を実現します。 推論速度の向上: レスポンスが40%速くなり、バッチ処理時間が短縮されることで、より良い顧客体験と迅速な洞察を実現します。 新しいMeta Llama 3.3モデルへのアクセス: Metaの最新技術を活用して、品質とパフォーマンスを向上させま
DatabricksのモザイクAIを用いて複合AIシステムをより高速に構築!
多くのお客様が、一般的なモデルを使用したモノリシックなプロンプトから、製品準備完了のGenAIアプリに必要な品質を達成するための特化した複合AIシステムへと移行しています。 7月には、 エージェントフレームワークとエージェント評価を立ち上げ 、多くの企業がエージェントアプリケーションを作成するために使用しています。その一例が Retrieval Augmented Generation (RAG) です。今日、私たちはエージェントフレームワークに新機能を追加し、複雑な推論を行い、サポートチケットの開設、メールへの返信、予約の取得などのタスクを実行するエージェントの構築プロセスを簡素化することを発表します。これらの機能には以下のものが含まれます: 構造化されたエンタープライズデータと非構造化エンタープライズデータを共有可能で管理された AIツールを通じてLLMに接続します。 新しいプレイグラウンド体験を使って、エージェントを素早く実験し評価します 。 新しい ワンクリックコード生成 オプションを使用して、プレイグラ
Mosaic AI Gatewayに高度なセキュリティとガバナンス機能が登場!
私たちは、Mosaic AI Gatewayに新たな強力な機能を導入できることを嬉しく思います。これにより、お客様がAIイニシアチブをさらに簡単に、そしてセキュリティやガバナンスを強化しながら加速させることが可能になります。 企業がAIソリューションの導入を急ぐ中で、セキュリティ、コンプライアンス、コストの管理がますます難しくなっています。そこで、昨年Mosaic AI Gatewayをリリースし、多くの企業がOpenAI GPT、Anthropic Claude、Meta Llamaモデルを含むさまざまなモデルのAIトラフィックを管理するために使用しています。 今回のアップデートでは、使用状況の追跡、ペイロードログの記録、ガードレール設定といった高度な機能が追加され、Databricksデータインテリジェンスプラットフォーム内のあらゆるAIモデルに対してセキュリティとガバナンスを適用できるようになりました。このリリースにより、Mosaic AI Gatewayは最も機密性の高いデータやトラフィックに対しても、プ
Lakehouse Monitoring 一般提供開始:インテリジェントなデータ品質のプロファイリング、診断、実施
Data and AI Summitで、我々は Databricks Lakehouse Monitoring の一般提供開始を発表しました。データとAIの監視に対する統一的なアプローチにより、 Databricks Data Intelligence Platform 内で直接プロファイルを作成し、診断し、品質を強制することが容易になります。これは直接 Unity Catalog 上に構築されており、Lakehouse Monitoring ( AWS | Azure )は追加のツールや複雑さを必要としません。ダウンストリームプロセスが影響を受ける前に品質問題を発見することで、組織はデータへのアクセスを民主化し、データへの信頼を回復することができます。 なぜデータとモデルの品質が重要なのか...
生成AIモデルのファインチューニングが簡単に!Mosaic AI Model Trainingが登場
本日、Mosaic AIモデルトレーニングによる生成AIモデルの微調整サポートがパブリックプレビューで利用可能になったことをお知らせできることを嬉しく思います。Databricksでは、汎用LLM(大規模言語モデル)の知能と企業データの知識を結びつけること、すなわち「データインテリジェンス」が高品質な生成AI システム を構築する鍵であると考えています。ファインチューニングにより、モデルは特定のタスクやビジネスコンテキスト、専門知識に特化でき、RAG(再利用可能な生成)と 組み合わせ ることで、より正確なアプリケーションが可能になります。これにより、企業データを取り入れて生成AIを独自のニーズに適応させるための重要な柱となる「データインテリジェンスプラットフォーム戦略」が形成されます。 モデルトレーニング 私たちの顧客は昨年、20万以上のカスタムAIモデルをトレーニングしており、その経験を基にMosaic AI Model Trainingという完全マネージドサービスを開発しました。Llama 3、Mistral
Databricks モデルサービングの新たなアップデートで生成 AI アプリ開発を加速
昨年、 Databricksモデルサービングにおける 基盤モデルのサポート を開始し 、企業が統合データおよび AI プラットフォーム上で安全でカスタマイズされた生成 AI アプリを構築できるようにしました。 それ以来、何千もの組織がモデルサービングを使用して、独自のデータセットに合わせてカスタマイズされた生成 AI アプリを展開してきました。 本日、生成 AI アプリの実験、カスタマイズ、展開を容易にする新しいアップデートを発表できることを嬉しく思います。 これらの更新には、新しい大規模言語モデル (LLM) へのアクセス、より簡単な検出、よりシンプルなカスタマイズ オプション、および改善された モニタリング が含まれます。 これらの改善により、生成 AI...
レイクハウス・モニタリング: データとAIの品質監視のための統合ソリューション
はじめに Databricks Lakehouse Monitoring (レイクハウス・モニタリング)を使用すると、データからフィーチャー、MLモデルまで、すべてのデータパイプラインを追加のツールや複雑な操作なしに監視できます。 Unity Catalog に組み込まれているため、ガバナンスと並行して品質を追跡し、データとAI資産の パフォーマンスについて深い洞察を得ることができます。Lakehouse Monitoringは完全にサーバーレスなので、インフラストラクチャやコンピュート構成のチューニングを心配する必要はありません。 Lakehouseのモニタリングに対する統一されたアプローチにより、 Databricks Data Intelligence Platform で直接、品質の追跡、エラーの診断、ソリューションの検索が簡単に行えます。Lakehouse Monitoringを最大限に活用する方法を本記事ではご紹介します。 なぜレイクハウス・モニタリングなのか? データパイプラインは順調に動いているよう
「推論テーブル」の発表: AIモデルのモニタリングと診断を簡素化
翻訳:Saki Kitaoka. - Original Blog Link AIモデルを導入してみたものの、実世界で予想外の結果が出たという経験はありませんか? モデルのモニタリングは、そのデプロイと同じくらい重要です。そこで、AIモデルのモニタリングと診断を 簡素化するInference Tablesをご紹介します。Inference Tablesを使用すると、 Databricks Model Serving エンドポイントからの入力と予測を継続的にキャプチャし、Unity Catalog Delta Tableに記録することができます。その後、Lakehouse Monitoringなどの既存のデータツールを活用して、AIモデルを監視、デバッグ、最適化できます。 推論テーブルは、LakehouseプラットフォームでAIを実行する際に得られる価値の素晴らしい例です。複雑さやコストを追加することなく、デプロイされたすべてのモデルでモニタリングを有効にすることができます。これにより、問題を早期に検出し、再トレーニン
Databricks Lakehouse AIでLlama 2 Foundation Modelsが利用可能になりました!
翻訳:Saki Kitaoka. - Original Blog Link 私たちは、Meta AIのLlama 2 チャットモデル ( Meta AI’s Llama 2 ) が Databricks Marketplace で利用可能になり、プライベートモデルのサービングエンドポイントに微調整してデプロイでき ることを発表できることを嬉しく思います。Databricksマーケットプレイスは、クラウド、リージョン、プラットフォーム間でデータアセット(データセットやノートブックを含む)を共有および交換できるオープンなマーケットプレイスです。既にマーケットプレイスで提供されているデータアセットに加え、この新しいリスティングは、7から70ビリオンのパラメータを持つLlama 2のチャット指向の大規模言語モデル(LLM)、およびUnityカタログの集中ガバナンスと系統追跡へのインスタントアクセスを提供します。各モデルはMLflowにラップされており、Databricksノートブックで MLflow Evaluation.
Databricks Model Servingを使用したプライベートLLMのデプロイ
翻訳:Saki Kitaoka. - Original Blog Link Databricks Model ServingのGPUおよびLLM最適化サポートのパブリックプレビューを発表できることを嬉しく思います!この発表により、LLMやVisionモデルを含む、あらゆるタイプのオープンソースまたは独自のカスタムAIモデルをLakehouseプラットフォ ーム上にデプロイできるようになります。Databricks Model Servingは、LLM Serving用にモデルを自動的に最適化し、設定なしでクラス最高のパフォーマンスを提供します。 Databricks Model Servingは、統合データおよびAIプラットフォーム上で開発された初のサーバーレスGPUサービング製品です。これにより、データの取り込みから微調整、モデルのデプロイ、モニタリングに至るまで、GenAIアプリケーションの構築とデプロイをすべて単一のプラットフォーム上で行うことができます。 Azure上のユーザーは、Model Serving