メインコンテンツへジャンプ
ページ 1
>

セマンティックキャッシュで実現!コスパ最強チャットボット構築

チャットボットは、ビジネスにとって価値あるツールとなりつつあり、 効率を向上させる ためや 従業員をサポートする ために役立ちます。LLMは、企業のデータやドキュメンテーションを大量に探し、幅広い問い合わせに対して情報を提供することで、従業員をサポートできます。経験豊富な従業員にとって、これは冗長で生産性の低いタスクに費やす時間を最小限に抑えるのに役立ちます。新入社員にとって、これは正しい答えを得るまでの時間を短縮するだけでなく、これらの従業員を オンボーディング を通じてガイドし、 知識の進行 を評価し、さらなる学習と開発のためのエリアを提案するのにも使用できます。 これらの機能は、今後も 労働者を補完する 可能性が高いと見られています。そして、多くの先進国で労働者の利用可能性に 差し迫った課題 がある中、多くの組織は、彼らが提供できるサポートを最大限に活用するために、内部プロセスを再構築しています。 LLMベースのチャットボットのスケーリングはコストがかかる チャットボットを大規模に導入する準備をしている企業

よりパーソナライズされたマーケティングコンテンツの作成のための生成的AIワークフローの構築

パーソナライゼーションとスケールは、歴史的には相互に排他的でした。 ワン・トゥ・ワン・マーケティング や ハイパーパーソナライゼーション についての話題が多い一方で、私たちが作成できるマーケティングコンテンツの量には常に制限がありました。パーソナライゼーションは、マーケターの帯域幅が限られていたため、数万人または数十万人の顧客グループにコンテンツをカスタマイズすることを意味していました。生成的AIはそれを変え、コンテンツ作成のコストを下げ、スケールでのカスタマイズされたコンテンツを現実のものにします。 それを実現するために、私たちは製品の説明という標準的なコンテンツの単位を取り、顧客の好みと特性に基づいてカスタマイズするシンプルなワークフローを共有します。私たちの初期のアプローチはセグメントごとにカスタマイズするため、まだ本当のワン・トゥ・ワンではありませんが、より細かいコンテンツのバリエーションを作成する明確な可能性があり、近いうちにますます多くのマーケティングチームがこれらのアプローチを使用して、テーラーメイ

Databricksにおけるマルチモデル予測のためのフレームワーク

はじめに 時系列予測は、多くの企業における在庫管理や需要管理の基盤となっています。過去のデータと予測される条件を組み合わせて、企業は売上や販売数量を予測し、期待される需要に応じてリソースを配分します。このような基本的な作業であるため、企業は常に予測の精度を向上させる方法を探求しています。これにより、適切なタイミングで適切な場所にちょうど良い量のリソースを配置し、資本の無駄遣いを最小限に抑えることができます。 多くの組織が直面する課題は、利用可能な予測手法の幅広さです。古典的な統計手法、一般化加法モデル、機械学習や深層学習に基づくアプローチ、そして最近では事前学習された生成的AIトランスフォーマーなど、選択肢が非常に多く、シナリオによってはある手法が他の手法よりも優れていることがあります。 多くのモデル開発者は、ベースラインのデータセットに対して予測精度の向上を主張しますが、実際にはドメイン知識やビジネス要件によって、選択肢は数種類に絞られます。その上で、実際のデータセットに適用し評価することで、どのモデルが最適か

Snowplowでデータチームを強化:ファーストパーティデジタルイベントデータ収集の新時代

顧客とのやり取りがますますデジタル領域に移行するにつれて、組織がオンライン顧客行動に関する知見を開発することがますます重要になります。 これまで、多くの組織はサードパーティのデータ収集業者に依存していましたが、プライバシーに関する懸念の高まり、データへのよりタイムリーなアクセスの必要性、カスタマイズされた情報収集の要件により、多くの組織がこの機能の社内への移行を進めています。 Snowplow などの顧客データ インフラストラクチャ (CDI) プラットフォームと Databricks のリアルタイム データ処理および予測機能を組み合わせることで、これらの組織は、より深く、より豊富で、よりタイムリーで、よりプライバシーに配慮した知見を開発し、オンライン顧客エンゲージメントの可能性を最大限に引き出すことができます (図 1)。 ただし、このデータの可能性を最大限に引き出すには、これらのデータがサードパーティのインフラストラクチャを介して流れていたときには行わなかった方法で、デジタル チームが組織のデータ エンジニア

生成AIを用いてブランドイメージに沿った画像を作成する

画像生成技術は、小売業や消費財メーカーに大きなメリットをもたらします。 生成モデルを使用することで、ユーザーのプロンプトから様式的な画像とフォトリアリスティックな画像の両方を生成することができ、マーケティング担当者やデザイナー、製品開発チームは、新しいアイデアやデザインを迅速かつ効果的に検討することができます。 このAI技術を使用するための主な要件は、ユーザーがコンセプトを明確に表現する能力です。 共通の目標に集中する個人からなる小さなチームは、AIにプロンプトを渡すことで、アイデアを評価したり、新しいアイデアを閃いたりするのに役立つビジュアライゼーションを生成できます。 このような技術によって促進されるプロセスでは、チームは先行投資コストを削減し、フィードバックまでの時間を短縮し、最終的には、新しい、革新的で差別化されたコンテンツやデザインコンセプトにつながる、より創造的なプロセスに従事することができます。 しかし、大量の一般的な画像で事前に訓練されたモデルを使用することは、あるまとまった画像を作成するのに適し

Hightouch Campaign IntelligenceとDatabricksでより深いマーケティングの洞察を引き出す

次世代の顧客体験は、さまざまなタッチポイントから得られるデータと洞察に基づいて構築されます。 マーケティング担当者はこれらを通じて、顧客のニーズや嗜好の微妙な違いを察知し、顧客とビジネスの双方に付加価値をもたらすパーソナライズされたエンゲージメントを構築することができます。 しかし、そのためには慎重な思考、計画、実行が必要であり、どんなに綿密な計画を立てても成功が保証されるわけではありません。 このため、マーケティング担当者は、特定のオファーやコンテンツ単位に対する直接的な顧客の反応と、これらの取り組みがサポートすることを意図した包括的な組織目標の両方の観点から、取り組みの影響を慎重に検討することが不可欠です。 この分析により、マーケティングチームは時間と費用をどこに費やすべきかをより的確に判断できるようになります。 キャンペーンインテリジェンス:顧客データとマーケティングデータの統合 このような分析と洞察のニーズに対応するため、Hightouchは キャンペーンインテリジェンス を導入しました。 このソリューシ

生成AIを使って商品コピー(説明文)の作成を拡張する

eコマースプラットフォームでは、優れた商品説明は商品を目立たせ、販売を促進します。 優れた商品説明は、正確で読みやすく、顧客のニーズにつながるだけでなく、ブランドや小売業者のサイトのイメージを強化するものでなければなりません。 多くの組織では、少人数のライターチームが商品コピーとも呼ばれる説明文の作成に取り組んでいます。 ビジネスのニーズによっては、ブランドとの一貫性を保ちながら、消費者の共感を得るために必要なすべての要素をバランスよく配置するまでに、商品コピーは何度も繰り返し進化することがあります。 ファッション業界など、新商品の投入頻度が高い業界では、プラットフォームで販売できるようになるまでに時間がかかります。 生成AIを使用することで、コピーライターは新しい商品説明文の作成に取り掛かることができます。 生成AIは、商品画像から基本的な説明を抽出し、商品に関する情報を組み合わせて、ブランドのニーズに沿ったトーンやスタイルを反映したコピーの草稿を作成するために使用できます。 作家はこれらを出発点として、ゼロか

データガバナンスを改善しAI対応の小売組織を構築する

人工知能は、小売および消費財のすべての経営幹部にとっての最重要の課題です。 企業は、より良い顧客サービスを提供し、より迅速で正確な洞察を導き出し、より優れたイノベーションとパートナーとのコラボレーションを推進できる可能性を認識しています。 数十億ドルが危険にさらされています。 これらの新しいAIシステムを強化するために必要なデータについては、あまり言及されていません。 従来のレポートデータに加えて、これらのAIシステムはプレゼンテーション、文書、電子メール、顧客サービスの記録、画像などを消費します。 AIシステムの品質は、システムに供給されるデータがどれだけ適切に管理されているかに完全に依存します。 構造化データを運用システムから分析システムに流すプロセスの定義と改良には数十年が費やされましたが、非構造化データをめぐる取り組みの大部分は、ストレージとコンピューティングコストの管理が中心でした。 組織がこれらの情報資産を分析基盤に組み込もうとする中で、これらのデータの品質、信頼性、適切な使用方法に関する重要な疑問が

大規模言語モデルを用いて常識に沿った商品レコメンデーションを行う

詳細とノートブックのダウンロードについては、 LLM Solution Accelerators for Retail をご覧ください。 商品の推薦(レコメンデーション)は、現代の顧客体験の中核をなす機能です。 ユーザーは以前利用したことのあるサイトに戻ったとき、以前の利用内容に関連するレコメンデーションが表示されることを期待します。 ユーザーが特定のアイテムに興味を持ったとき、類似した関連性のある代替品が提案され、自分のニーズに合ったアイテムを見つけられることを期待します。 また、商品がカートに入れられると、ユーザーは、全体的な購買体験を完成かつ向上させる追加の商品がレコメンドされることを期待します。 このような商品のレコメンデーションが適切に行われれば、買い物がスムーズになるだけでなく、ユーザーは小売店によって認識され、理解されていると感じることができます。 商品のレコメンデーションを生成するための様々なアプローチがありますが、現在使用されているレコメンデーションエンジンのほとんどは、小売業者固有の大規模なデ

分散XGBoostとLightGBMモデルの軽量なデプロイパターン

翻訳:Saki Kitaoka. - Original Blog Link データサイエンティストが機械学習ソリューションを開発する際に遭遇する一般的な課題は、サーバーのメモリに収まらないほど大きなデータセットでモデルをトレーニングすることです。これは、顧客の離反や傾向を予測するモデルをトレーニングする際に、数千万人のユニークな顧客を扱う必要がある場合に発生します。ある期間に行われた何億もの広告インプレッションに関連するリフトを計算する必要があるとき、このようなことが起こります。また、何十億ものオンラインインタラクションの異常行動を評価する必要がある場合にも、この問題が発生します。 この課題を克服するために一般的に採用されているソリューションの1つは、Apache Sparkデータフレームに対して動作するようにモデルを書き換えることです。Sparkデータフレームでは、データセットはパーティションと呼ばれるより小さなサブセットに分割され、Sparkクラスタの集団リソースに分散されます。 より多くのメモリが必要ですか