メインコンテンツへジャンプ
<
ページ 6

Hadoop からレイクハウスへの移行:成功のための 5 つのステップ

August 6, 2021 Harsh Narula による投稿 in
Hadoop (ハドゥープ)から レイクハウスアーキテクチャ のようなモダンなクラウドベースのアーキテクチャへの移行は、技術的な判断ではなく、ビジネス的な判断です。以前のブログ、 It’s Time to Re-evaluate Your Relationship With Hadoop では、組織がHadoop との関係を再評価する必要がある理由を解説しました。技術やデータ、ビジネスのステークホルダーが、エンタープライズの Hadoop を移行する決断をした後、移行を実行する前に 考慮すべき課題 があります。本ブログでは、実際の移行プロセスそのものに焦点を当て、移行を成功させるための重要なステップや、新たなデータドリブンなイノベーションの成功にレイクレイクハウスアーキテクチャが果たす役割を説明します。 移行のステップ 率直に言って、移行は決して容易ではありません。しかし、移行を構造化することで、リスクを最小限に抑え、ビジネスの継続性を確保し、コストを効果的に管理できます。そのためには、 Hadoop からの移行

データレイクとデータウェアハウスの違いとデータレイクハウスへの進化

May 19, 2021 Bill InmonMary Levins による投稿 in
このブログは、Forest Rim Technology(フォレスト・リム・テクノロジー社)のデータチームの寄稿によるものです。同社の創業者兼 CEO ビル・インモン氏、最高データ戦略責任者メアリー・レビンズ氏の貢献に感謝します。 最初の課題 ビッグデータを扱う人が最初に直面したデータの課題は、整合性でした。データの量が少なく、ソースのバリエーションも限られていた頃は、構造化データのテーブルで構成されたリレーショナルデータベース(RDB・関係データベース)の使用で事足りていましたが、アプリケーションが普及するようになると、複数のアプリケーションに同じデータが異なる値で現れ、データの整合性がとれないという課題が発生しました。どのデータが正しいかを判断するには、数あるアプリケーションの中から、どのバージョンのデータを使うべきかを見極めなくてはなりません。もしユーザーが適切なバージョンのデータを使用できなければ、判断を誤ってしまう可能性もあります。 意思決定に適切なデータを使用するために、単純なリレーショナルデータベー

Hadoop(ハドゥープ)からの移行に伴う潜在価値とは

February 18, 2021 Brian Dirking による投稿 in
Hadoop(ハドゥープ)とは、分散処理技術(分散処理基盤)とも呼ばれ、テキストや画像、動画などの非構造化データの格納と処理ができるオープンソースのプラットフォームのことです。ファイルの管理には、分散ファイルシステム HDFS(Hadoop Distributed File System)が使用されていることが特徴です。長年にわたり、この Hadoop(ハドゥープ)はビッグデータの分析を支えるデフォルトのテクノロジーでした。しかし、時間の経過とともに、その欠点をカバーし、かつ、より優れた分析ソリューションを提供する新たなテクノロジーが登場し、Hadoop は遅れをとるようになりました。多くの企業が Hadoop 運用を続けることによるTCO(総所有コスト)を見直し、最新のクラウドベース分析プラットフォームへの移行を是認する方向に動いています。Databricks では先日、ホワイトペーパー 「The Hidden Value of Hadoop Migration」 (Hadoop からの移行に伴う潜在価値)を発