メインコンテンツへジャンプ
<
ページ 2

Databricksのワークフローを利用したLakehouseのオーケストレーション

Original: Lakehouse Orchestration with Databricks Workflows 翻訳: junichi.maruyama 業界を問わず、組織はレイクハウス・アーキテクチャを採用し、すべてのデータ、アナリティクス、AIのワークロードに統一プラットフォームを使用しています。ワークロードを本番環境に移行する際、組織はワークロードのオーケストレーションの方法が、データとAIソリューションから引き出すことのできる価値にとって重要であることに気づいています。オーケストレーションが正しく行われれば、データチームの生産性を向上させ、イノベーションを加速させることができ、より良いインサイトと観測性を提供でき、最後にパイプラインの信頼性とリソース利用を改善することができる。 Databricks Lakehouse Platformの活用を選択したお客様にとって、オーケストレーションがもたらすこれらの潜在的なメリットはすべて手の届くところにありますが、Lakehouseとうまく統合されたオーケ

Delta Live Tables の一般提供開始を発表

Databricks は本日、 Delta Live Tables(DLT) の Amazon AWS と Microsoft Azure クラウドにおける一般公開、および Google Cloud におけるパブリックプレビューの提供開始を発表しました。このブログでは、DLT が大手企業のデータエンジニアやアナリストをどのように支援し、本番環境に対応したストリーミングとバッチパイプラインの簡単な構築や、大規模なインフラストラクチャの自動管理、および、新世代のデータ、分析、AI アプリケーションの提供に役立つかについて解説します。 レイクハウスにおけるシンプルなストリーミングとバッチ ETL ETL(抽出・変換・ロード)に対するストリーミング、バッチワークロードの処理は、分析、データサイエンス、機械学習ワークロードの基本的な取り組みです。企業が生み出す膨大なデータ量がこの傾向を加速させています。しかし、未加工の構造化されていないデータを、クリーンで文書化された信頼のおける情報に処理することは、ビジネスの知見を推進す