メインコンテンツへジャンプ
<
ページ 3

データレイクハウスでコンピュータビジョンアプリケーションを実現する

Original Blog : Enabling Computer Vision Applications With the Data Lakehouse 翻訳: junichi.maruyama ブログ「 Tackle Unseen Quality, Operations and Safety Challenges with Lakehouse...

データレイクハウスによるリアルタイムPOS分析

翻訳:Saki Kitaoka. Original Blog Link 製品供給の減少や倉庫のキャパシティの低下といったサプライチェーンの混乱に加え、 シームレスなオムニチャネル 体験に対する消費者の期待が急速に変化していることから、小売企業は自社のオペレーションを管理するためのデータ活用方法を見直す必要に迫られています。 パンデミック(世界的大流行)以前は、 小売企業の71% が、オムニチャネル目標を達成するための最大の障害として、在庫のリアルタイム可視性の欠如を挙げていました。パンデミックは、 オンラインと店舗を統合したエクスペリエンスへの需要を高める だけでなく、正確な商品の在庫状況を提示し、注文の変更を即座に管理しなければならないというプレッシャーを小売企業に与えることになりました。 リアルタイムの情報 へのアクセスを向上させることが、新たな時代の消費者の要求に応える鍵となります。 このブログでは、小売業におけるリアルタイムデータの必要性と、POSデータのリアルタイムストリーミングをデータレイクハウスで大

機械学習を活用した小売業者・ブランドのためのアイテムマッチング

アイテムマッチングは、オンラインマーケットプレイスの中核的な機能です。小売業者は、最適化された顧客エクスペリエンスを提供すべく、新規/更新された商品情報を既存のリストと比較して、一貫性を確保し、重複を回避します。また、オンライン小売業者は、競合他社のリストと比較して、価格やインベントリの差異を確認します。複数のサイトで商品を提供しているサプライヤーでは、商品がどのように提示されているかを調べて、自社の基準との整合性を確保できます。 効果的なアイテムマッチングの必要性は、オンランコマースに限られたことではありません。DSR(デマンドシグナルリポジトリ)は、数十年もの間、補充オーダーのデータに POS やシンジゲートされた市場データを組み合わせて、消費財メーカーに需要の全体を把握するケイパビリティを提供してきました。しかし、メーカーが自社の製品定義と、数十もの小売店パートナーの製品説明との間の差異を埋めることができなければ、DSR の価値は制限されます。 このようなタイプのデータをまとめる際の課題は、異なるデータの照

カスタマーリテンション(顧客維持)による LTV の向上と最大化 – ML のハイパーパラメータで解約率を予測

顧客のロイヤルティや維持率が高い企業では、収益が同業他社に比べ 250% 早く成長 し、10 年間での株主利益率も 2 倍から5 倍に達します。顧客のロイヤルティを獲得し、定着数を最大にすることは、企業と顧客ベースの両方に多くの利益をもたらします。 ではなぜ多くの企業にとって顧客の維持が難しいのでしょうか?ARPU(顧客 1 人あたりの平均売上高)を指標とする通信会社などのサブスクリプションベースの企業以外は、顧客維持率の公式な開示を重視していない企業がほとんどです。企業では、顧客ではなく製品やサービスの機能面に重点を置き、顧客ロイヤルティはこれらの取り組みによって自然に向上するものと考えています。実際に、 ニールセンの 2020 年の調査結果 では、「企業のマーケティング目標の中で、顧客離脱・解約への対応の優先度は最下位」であることが明らかになっています。 多くの事実からも、顧客の消費行動が変化していることがわかっており、顧客維持は特に重要な課題です。 新型コロナウイルス感染症(COVID-19)による消費行動

Facebook Prophet と Apache Spark による高精度で大規模な時系列予測・分析とは

Databricks の時系列予測・解析 Notebook を試してみる 時系列予測・分析技術の進展により、小売業における需要予測の信頼性は向上しています。しかし、より正確なインベントリ管理を実現したい企業にとっては、予測の精度とタイミングが課題となっています。従来のソリューションにおいては拡張性や正確性の面で制約がありましたが、 Apache Spark™ と Facebook Prophet の活用によってこれらの課題を克服する企業が増えてきています。 To see this solution for Spark 3.0, please read the post here...