SIEM検知ルー ルの進化:シンプルから洗練への旅
サイバー脅威とそれに対抗するツールはより洗練されたものになっています。 SIEMは20年以上の歴史があり、その間に大きく進化してきました。 当初はパターンマッチングと閾値ベースのルールに依存していたSIEMは、より高度なサイバー脅威に対処するために分析能力を向上させました。 「検知成熟度曲線」と呼ばれるこの進化は、セキュリティ運用が単純な警告システムから脅威の予測分析が可能な高度なメカニズムへと移行したことを示しています。 このような進歩にもかかわらず、最新のSIEMは、大規模なデータセットや長期的な傾向分析、機械学習による検出のためのスケーリングという課題に直面しており、複雑化する脅威要因の検出と対応に対する組織の能力が問われています。 そこでDatabricksがサイバーセキュリティチームを支援します。 Apache Spark™、MLflow、およびDeltaテーブルを搭載したDatabricksの統合アナリティクスは、企業の最新のビッグデータと機械学習のニーズを満たすために、コスト効率よく拡張できます。
Databricksをユーザが容易に利用できるようにするために、新しいIDとアクセス管理の機能強化を発表
Databricks のセットアップとスケールを簡素化する新しいアイデンティティとアクセス管理機能をご紹介します。Unity Catalogは Databricks Data Intelligence Platform におけるガバナンスの中心にあります。Unity Catalogの一部であるIDおよびアクセス管理機能は、以下の原則に基づいて設計されています: オンボーディング、管理、コラボレーションのための、セキュアでスケーラブル、かつ汎用的なアイデンティティおよびアクセス管理を構築します。 直感的で拡張可能な監査対応パーミッションを使用して、顧客がDatabricksへのアクセスを容易に制御できるようにします。 ブラウザおよび API アクセスのための、ワールドクラスで拡張性の高い認証を開発し、顧客およびパートナーが Databricks Data Intelligence Platform のパワーをシンプルかつ安全に活用できるようにします。 このブログでは、既存のアイデンティティおよびアクセス管理機能につ
サイバーセキュリティ・レイクハウス Part 4: データ正規化戦略
この4部構成のブログ・シリーズ "Lessons learned from building Cybersecurity Lakehouses," では、サイバーセキュリティ・データ用のレイクハウスを構築する際に、組織がデータ・エンジニアリングで直面する多くの課題について議論し、それを克服するために私たちが現場で使用したソリューション、ヒント、コツ、ベスト・プラクティスを紹介する。 パート1では 、まず統一されたイベントのタイムスタンプ抽出から始めた。 パート 2では、ログの取り込みの遅れを発見し、対処する方法について見てきた。 そして パート3では 、半構造化された機械生成データの解析方法に取り組んだ。 このシリーズの最終回では、サイバーアナリティクスの最も重要な側面の1つである、 共通の情報モデルを使用したデータの正規化について 説明します。 このブログが終わるころには、サイバーセキュリティ・レイクハウスにデータを正規化する際に直面するいくつかの問題と、それを克服するために使用できるテクニックについて、しっか
Azure DatabricksでAzure コンフィデンシャル コンピューティング(ACC)サポートが一般提供開始しました
本日、 Azure Databricksの Azureコンフィデンシャル・コンピューティング (ACC)サポートの一般提供を 発表 できることを嬉しく思います! Azureコンフィデンシャル・コンピューティングのサポートにより、顧客はAMDベースのAzureコンフィデンシャル仮想マシン(VM)で使用中またはメモリ内のデータを保護することで、Databricks上で機密性とプライバシーを高めたエンドツーエンドのデータプラットフォームを構築できます。 この種のデータ保護は、静止データ用の 顧客管理キーや 、転送中のデータ用のTLS暗号化付き プライベートリンクなど 、既存のAzure Databricksコントロールを使用した機密データの保護を補完するものです。 その結果、Azure コンフィデンシャル VM上で稼働するAzure Databricksクラスタは、包括的なエンドツーエンドの暗号化ソリューションによって保護され、ライフサイクル全体を通じてデータを保護します。 ワークロードを実行するACC VMを選択する
サイバーセキュリティ・レイクハウス Part 3: データ解析戦略
この4部構成のブログシリーズ ("Lessons learned from building Cybersecurity Lakehouses," )では、サイバーセキュリティ・データ用のレイクハウスを構築する際に組織がデータエンジニアリングで直面する多くの課題について議論し、それを克服するために私たちが現場で使用した解決策、ヒント、コツ、ベストプラクティスを紹介する。 パート1では 、まず統一されたイベントのタイムスタンプ抽出から始めた。 パート 2では、ログの取り込みの遅れを発見し、対処する方法について見てきた。 この第3回目のブログでは、 メダリオンアーキテクチャを 指針として、 半構造化機械生成データの解析に関する いくつかの問題に取り組む。 このブログでは、ログ生成データを解析する際に直面する課題について概説し、アナリストが異常な行動、潜在的な侵害、侵害の指標に関する洞察を得るために、データを正確に取得し、解析するためのガイダンスとベストプラクティスを提供します。 このブログが終わる頃には、Cybers
サイバーセキュリティ・レイクハウス Part2:取り込み遅延への対応
この4部構成のブログ・シリーズ「 Lessons learned building Cybersecurity Lakehouses 」では、サイバーセキュリティ・データ用のレイクハウスを構築する際に、組織がデータ・エンジニアリングで直面する多くの課題について議論し、それらを克服するために私たちが現場で使用したソリューション、ヒント、トリック、ベスト・プラクティスを紹介する。 パート1では 、まず統一されたイベントのタイムスタンプ抽出から始めた。 この第2部では、効果的なセキュリティ運用を維持するために不可欠な ログの取り込みの遅延を 発見し、対処する方法について見ていく。 このブログが終わるころには、直面する問題のいくつかと、データ取り込みの遅れを監視し報告するために使用できるいくつかのテクニックをしっかりと理解していることだろう。 なぜデータの取り込みが重要なのか? タイムリーで、正確で、検索可能なログデータは、セキュリティ・オペレーションにおいて非常に重要です。 アナリストは、セキュリティ・イベントやインシ
サイバーセキュリティ・レイクハウス Part 1: イベントのタイムスタンプ抽出
この4回にわたるブログ・シリーズ "Lessons learned from building Cybersecurity Lakehouses," では、サイバーセキュリティ・データ用のレイクハウスを構築する際に、組織がデータ・エンジニアリングで直面する多くの課題について説明し、それを克服するために私たちが現場で使用したソリューション、ヒント、コツ、ベスト・プラクティスを紹介する。 このシリーズで は、サイバーセキュリティのレイクハウスを作りたいとお考えの方に、課題を学び、進むべき道を提案します。 Databricksは、サイバーログを効率的に処理し、標準化するための実用的なローコード・コンフィギュレーション・ソリューションを構築した。 当社のLakehouseプラットフォームは、データエンジニアリングを簡素化し、検索、分析、ストリーム型脅威検知への迅速な移行を促進します。 既存のSIEMやSOARシステムを補完し、不必要に複雑化することなくサイバーセキュリティ運用を強化します。 第1部では、サイバー分析エンジン
Databricks on Google Cloudの新しいプラットフォームセキュリティ制御でワークスペースを保護する
Databricks on Google Cloudのいくつかの主要なセキュリティ機能の一般提供(GA)を発表できることを嬉しく思います: プライベート・サービス・コネクト(PSC)によるプライベート接続 顧客が管理する暗号化キー アカウント・コンソールおよびAPIアクセス用のIPアクセス・リスト Databricks では、データはお客様の最も貴重な資産であると認識して います。 これらの重要なセキュリティ機能のGAを使用することで、 Databricks Lakehouse Platform 上で静止状態のデータを保護し、データを非公開に保ち、データ流出のリスクを軽減することができます。 このブログでは、よくあるセキュリティの質問を取り上げ、Google Cloudで利用できるようになった新しいセキュリティ機能と機能を説明します。 プライベート・サービス・コネクトによるエンド・ツー・エンドのプライベート・ワークスペース ほとんどの企業顧客は、ユーザーとワークロードがプライベートで隔離された環境でセキュリティデー
DatabricksがISO 27701認証を取得しました
翻訳:Saki Kitaoka. - Original Blog Link Databricks がデータ処理業者として国際標準化機構 (ISO) 27701 認証を取得したことをお知らせします。この認証は、プライバシーに対する当社のコミットメントを反映したものであり、顧客データを取り扱う際のDatabricksのプライバシー慣行について、第三者による検証をお客様に提供するものです。 ISO/IEC 27701:2019とは何ですか? ISO 27701認証は、ISO/IEC 27001のプライバシー管理拡張版であり、組織のコンテキスト内でプライバシー情報管理システム(PIMS)を確立、実 装、維持、および継続的に改善するためのガイダンスを提供します。この規格への準拠は、DatabricksのPIMSが欧州一般データ保護規則(GDPR)、カリフォルニア州消費者プライバシー法(CCPA)、およびその他のデータプライバシー規制への準拠をサポートしていることを示すものです。 Databricksの認定についてさらに詳しく
Delta Live Tablesを用いたサイバーセキュリティのレイクハウス向けETLパイプラインの構築
翻訳: Masahiko Kitamura オリジナル記事: Building ETL pipelines for the cybersecurity lakehouse with Delta Live Tables Databricksはこのほど、データエンジニア、データサイエンティスト、アナリストが、複雑なインフラを管理することなく、あらゆるクラウド上で信頼性の高いデータ、分析、MLワークフローを構築できるようにする Workflows を発表しました。Workflowsでは、 Delta Live Tables を使用して、インジェストやリネージを含む自動管理されたETLパイプラインを構築することができます。ワークフローとDelta Live...