Kundenbericht
Creating TV hits with AI

INDUSTRY: Media and entertainment

SOLUTION: Customer retention, revenue forecasting

TECHNICAL USE CASE: Data ingest and ETL, machine learning

Today’s consumers expect more from their content providers and can quickly tune out if expectations are not met. To ensure engagement and loyalty, Showtime wanted to leverage data to drive content strategy, but they struggled with scaling limitations of legacy systems and inefficient data pipelines. With Databricks unified data analytics platform, they now have an actionable view into the consumer journey to inform programming and content with the goal of increasing engagement while lowering churn.

Legacy Systems Slowed Time-to-Market of New Features

The Data Strategy team at Showtime is focused on democratizing data and analytics across the organization. They collect huge volumes of subscriber data (e.g. shows watched, time of day, devices used, subscription history, etc) and use machine learning to predict subscriber behavior and improve scheduling and programming. Unfortunately, legacy technology architectures were pulling teams away from high-value data science activities.

  • Infrastructure complexity: Finding the infrastructure that allowed for flexibility but didn’t require constant maintenance.
  • Inefficient Machine Learning Pipelines: The process to develop, train, and deploy machine learning models was highly manual and error-prone, leading to slower time-to-market of new models.

Smarter Content Programming with ML

The Databricks Unified Data Analytics Platform provides Showtime with a fully managed service that has greatly simplified data engineering and improved the productivity of their data science teams. Now they are able to tap into the insights within their rich pool of data to uncover opportunities to drive viewer engagement and reduce churn.

  • Automated Infrastructure: Fully managed, serverless cloud infrastructure for speed, cost control and elasticity.
  • Interactive Workspace: Make collaboration easy and seamless across teams and multiple programming languages to accelerate data science productivity.
  • Simplified ML Lifecycle: MLflow allows them to streamline the entire ML lifecycle.

Faster Data Analytics, Data Science Innovation

Databricks hat Showtime dabei geholfen, Daten und Machine Learning im gesamten Unternehmen zu demokratisieren und eine datenorientiertere Kultur zu schaffen.

  • 6x schnellere Pipelines: Daten-Pipelines, die mehr als 24 Stunden benötigten, werden jetzt in weniger als 4 Stunden ausgeführt, sodass Teams schneller Entscheidungen treffen können.
  • Entfernen der Infrastrukturkomplexität: Eine vollständig verwaltete Plattform in der Cloud mit automatisiertem Cluster-Management ermöglicht es dem Data Science-Team, sich auf Machine Learning zu konzentrieren, anstatt auf Hardwarekonfigurationen, die Bereitstellung von Clustern, Fehlerbehebung usw.
  • Das Abonnentenerlebnis erneuern: Die verbesserte Zusammenarbeit und gesteigerte Produktivität im Bereich Data Science haben die Markteinführungszeit für neue Modelle und Funktionen reduziert. Teams können schneller Experimente durchführen, was zu einer besseren, persönlicheren Erfahrung für Abonnenten führt.
  • 6x
    Faster data pipelines enables faster decision making

Being on the Databricks platform has allowed a team of exclusively data scientists to make huge strides in setting aside all those configuration headaches that we were faced with. It’s dramatically improved our productivity.”

– Josh McNutt, Senior Vice President of Data Strategy and Consumer Analytics, Showtime

Ähnliche Inhalte


Technical Talk at Spark + AI Summit EU 2019