Events - Databricks

Events

Filter:

Unified Analytics – Unifying Data Pipelines & Machine Learning with Apache Spark

Regional Event

Los Angeles, California

In this workshop, we’ll cover best practices for enterprises to use powerful open source technologies to simplify and scale your ML efforts. We’ll discuss how to leverage Apache Spark™️, the de-facto data processing and analytics engine in enterprises today, for data preparation as it unifies data at massive scale across various sources. You’ll learn how to use ML frameworks (i.e. Tensorflow, XGBoost, Scikit-Learn, etc.) to train models based on different requirements. And finally, you can learn how to use MLflow to track experiment runs between multiple users within a reproducible environment and manage the deployment of models to production.

AWS + Databricks Dev Day Workshop | New York City

Regional Event

New York City

In this workshop, we’ll cover best practices for enterprises to use powerful open source technologies to simplify and scale your ML efforts. We’ll discuss how to leverage Apache Spark™, the de-facto data processing and analytics engine in enterprises today, for data preparation as it unifies data at massive scale across various sources. You’ll also learn how to use ML frameworks (i.e. Tensorflow, XGBoost, Scikit-Learn, etc.) to train models based on different requirements. And finally, you can learn how to use MLflow to track experiment runs between multiple users within a reproducible environment, and manage the deployment of models to production on Amazon SageMaker.

AWS + Databricks Dev Day Workshop | Toronto

Regional Event

Toronto

In this workshop, we’ll cover best practices for enterprises to use powerful open source technologies to simplify and scale your ML efforts. We’ll discuss how to leverage Apache Spark™, the de-facto data processing and analytics engine in enterprises today, for data preparation as it unifies data at massive scale across various sources. You’ll also learn how to use ML frameworks (i.e. Tensorflow, XGBoost, Scikit-Learn, etc.) to train models based on different requirements. And finally, you can learn how to use MLflow to track experiment runs between multiple users within a reproducible environment, and manage the deployment of models to production on Amazon SageMaker.

Unified Analytics | Genomics Hands-on lab

Regional Event

Cambridge, UK

In this workshop, we’ll walkthrough how the Databricks Unified Analytics Platform for Genomics simplifies the end-to-end process of turning raw sequencing data into actionable insights at scale. Introduced by the original creators of Apache Spark, this platform makes it simple to deploy Spark-based bioinformatics tools on cloud computing, and rapidly accelerates common genomic analyses. Join this half day technical workshop to learn how to: - Call variants, both in a single sample and across multiple samples, using our accelerated GATK4 pipelines - Use Spark SQL to characterise the association of variants in a population with phenotypes - Use machine learning to model genome-wide disease risk across multiple variants associated with a phenotype of interest

AWS + Databricks Dev Day Workshop | Chicago

Regional Event

Chicago, IL

In this workshop, we’ll cover best practices for enterprises to use powerful open source technologies to simplify and scale your ML efforts. We’ll discuss how to leverage Apache Spark™️, the de-facto data processing and analytics engine in enterprises today, for data preparation as it unifies data at massive scale across various sources. You’ll also learn how to use ML frameworks (i.e. Tensorflow, XGBoost, Scikit-Learn, etc.) to train models based on different requirements. And finally, you can learn how to use MLflow to track experiment runs between multiple users within a reproducible environment, and manage the deployment of models to production on Amazon SageMaker.

AWS + Databricks Dev Day Workshop | Santa Monica

Regional Event

Santa Monica, CA

In this workshop, we’ll cover best practices for enterprises to use powerful open source technologies to simplify and scale your ML efforts. We’ll discuss how to leverage Apache Spark™, the de-facto data processing and analytics engine in enterprises today, for data preparation as it unifies data at massive scale across various sources. You’ll also learn how to use ML frameworks (i.e. TensorFlow, XGBoost, Scikit-Learn, etc.) to train models based on different requirements. And finally, you can learn how to use MLflow to track experiment runs between multiple users within a reproducible environment, and manage the deployment of models to production on Amazon SageMaker.

AWS + Databricks Dev Day Workshop (Afternoon) | Palo Alto

Regional Event

Palo Alto, CA - Afternoon Session

In this workshop, we’ll cover best practices for enterprises to use powerful open source technologies to simplify and scale your ML efforts. We’ll discuss how to leverage Apache Spark™, the de-facto data processing and analytics engine in enterprises today, for data preparation as it unifies data at massive scale across various sources. You’ll also learn how to use ML frameworks (i.e. TensorFlow, XGBoost, Scikit-Learn, etc.) to train models based on different requirements. And finally, you can learn how to use MLflow to track experiment runs between multiple users within a reproducible environment, and manage the deployment of models to production on Amazon SageMaker.

AWS + Databricks Dev Day HLS Workshop | Boston

Regional Event

Boston, MA

In this workshop, we’ll cover best practices for enterprises to use powerful open source technologies to simplify and scale your ML efforts. We’ll discuss how to leverage Apache Spark™, the de-facto data processing and analytics engine in enterprises today, for data preparation as it unifies data at massive scale across various sources. You’ll also learn how to use ML frameworks (i.e. Tensorflow, XGBoost, Scikit-Learn, etc.) to train models based on different requirements. And finally, you can learn how to use MLflow to track experiment runs between multiple users within a reproducible environment, and manage the deployment of models to production on Amazon SageMaker.

AWS + Databricks Dev Day Workshop (Morning) | Palo Alto

Regional Event

Palo Alto, CA - Morning Session

In this workshop, we’ll cover best practices for enterprises to use powerful open source technologies to simplify and scale your ML efforts. We’ll discuss how to leverage Apache Spark™, the de-facto data processing and analytics engine in enterprises today, for data preparation as it unifies data at massive scale across various sources. You’ll also learn how to use ML frameworks (i.e. TensorFlow, XGBoost, Scikit-Learn, etc.) to train models based on different requirements. And finally, you can learn how to use MLflow to track experiment runs between multiple users within a reproducible environment, and manage the deployment of models to production on Amazon SageMaker.

AWS + Databricks Dev Day Workshop | Boston

Regional Event

Boston, MA

In this workshop, we’ll cover best practices for enterprises to use powerful open source technologies to simplify and scale your ML efforts. We’ll discuss how to leverage Apache Spark™, the de-facto data processing and analytics engine in enterprises today, for data preparation as it unifies data at massive scale across various sources. You’ll also learn how to use ML frameworks (i.e. TensorFlow, XGBoost, Scikit-Learn, etc.) to train models based on different requirements. And finally, you can learn how to use MLflow to track experiment runs between multiple users within a reproducible environment, and manage the deployment of models to production on Amazon SageMaker.