DataFrames

Glossary Item
« Back to Glossary Index
Source Databricks

A DataFrame is the most common Structured API and simply represents a table of data with rows and columns. The list of columns and the types in those columns the schema. A simple analogy would be a spreadsheet with named columns. The fundamental difference is that while a spreadsheet sits on one computer in one specific location, a Spark DataFrame can span thousands of computers. The reason for putting the data on more than one computer should be intuitive: either the data is too large to fit on one machine or it would simply take too long to perform that computation on one machine.

DataFrames The DataFrame concept is not unique to Spark. R and Python both have similar concepts. However, Python/R DataFrames (with some exceptions) exist on one machine rather than multiple machines. This limits what you can do with a given DataFrame in python and R to the resources that exist on that specific machine. However, since Spark has language interfaces for both Python and R, it’s quite easy to convert to Pandas (Python) DataFrames to Spark DataFrames and R DataFrames to Spark DataFrames (in R).

« Back to Glossary Index