メインコンテンツへジャンプ
<
ページ 4

Koalas:pandas から Apache Spark への容易な移行 – データラングリング(カテゴリ変数の導入)

April 24, 2019 Tony LiuTim Hunter による投稿 in
データブリックスは本日開催された Spark + AI Summit において、PySpark の DataFrame API を拡張してpandas と互換性を持たせる新しいオープンソースプロジェクトの Koalas(コアラズ) を発表しました。 Python のデータサイエンスはここ数年で急速に拡大し、pandas は今ではエコシステムの要となっています。データサイエンティストはデータセットを入手する場合、pandas を使って検証します。pandas はデータラングリング(データクレンジング/データクリーニングおよびデータ整形)や分析に最適のツールです。実際に、pandas の read_csv は、データサイエンスに取り組む多くの学生が最初に学習する実行コマンドです。 pandas に課題があるとすれば、ビッグデータのスケーリングに適していないことです。pandas...

広告効果測定:機械学習モデル作成による広告・マーケティングデータ分析方法(クリック予測)

July 19, 2018 Tony Cruz による投稿 in
広告部門では、膨大な量の多様なマーケティングデータや Web 広告の効果を測定/分析するために、拡張性が高く柔軟なプラットフォーム・方法を必要としています。ビッグデータを活用したマーケティング効果測定(分類、クラスタリング、認識、予測、推薦などの高度な分析)によって、ビジネスの成果に結びつく、データからの深い洞察の抽出が可能となります。さまざまな種類の Web 広告の普及による多様なタイプのデータの増大に備え、Apache Sparkは、API と分散コンピューティングエンジンによってデータを容易にかつ並列に処理し、価値創出までの時間を短縮します。 Databricks レイクハウスプラットフォーム は、最適化されたマネージドクラウドサービスを提供し、コンピューティング資源と、共同作業のためのワークスペースのプロビジョニングを、セルフサービスで行う手段を提供します。 多くのデータサイエンティストが利用する Web サイト「Kaggle」から、広告インプレッションとクリックに関するデータ Click-Through