メインコンテンツへジャンプ
<
ページ 3
>

レイクハウス・ガバナンス・エコシステムを強化する: Databricks VenturesがImmutaに投資

Original: Strengthening the Lakehouse Governance Ecosystem: Databricks Ventures Invests in Immuta 翻訳: junichi.maruyama Databricks Venturesは、ImmutaのシリーズE資金調達ラウンドへの投資を発表し、業界をリードするデータセキュリティプラットフォームとの6年にわたるパートナーシップの最新ステップを示すことを嬉しく思います。 私たちのビジョン Databricks Lakehouseは、企業がデータとAIアプリケーションを一緒に開発し、大規模言語モデル(LLM)を構築するのに最適な場所です。私たちのlakehouseビジョンは、これらのワークロードを1つのプラットフォームで統一することを中心に据えています。私たちのレイクハウス・ビジョンの基盤には、すべてのデータとAIワークロードのためのデータガバナンスレイヤーである Unity Catalog があります。 Unity Cata

edXの新しい専門家主導の大規模言語モデル(LLMs)コースに登録する

Original : Enroll in our New Expert-Led Large Language Models (LLMs) Courses on edX 翻訳: junichi.maruyama edXの入門コースに今すぐ登録する!コースは2023年夏開始予定です edXの新しい大規模言語モデルコース Large Language Model (LLM)アプリケーションが無数の産業を破壊する中、生成AIは重要な基盤技術になりつつある。LLMベースのアプリケーションの需要は急増しており、それを構築できるエンジニアの需要も高まっています。 今日、私たちは新しい...

Free Dolly: 世界初の真にオープンな指示でチューニングされたLLM

Original Post: Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM 翻訳: Takaaki Yayoi 2週間前、ChatGPTのような人間のインタラクティブ性(指示追従性)を示すように、$30以下でトレーニングされた大規模言語モデル(LLM)である Dolly をリリースしました。本日、 研究と商用利用 にライセンスされた、人の手で生成された指示データセットでファインチューンされた、史上初のオープンソース、指示追従LLMである Dolly 2.0 をリリースします。...

Dolly:オープンなモデルで ChatGPT の魔法を民主化

概要 Databricks では、従来のオープンソースの大規模言語モデル(LLM)を利用して ChatGPT のような命令追従能力を実現できることを確認しました。高品質な学習データを使用して 1 台のマシンで 30 分ほどトレーニングするだけです。また、命令追従能力の実現には、必ずしも最新のモデルや大規模なモデルは必要ないようです。GPT-3 のパラメータ数が 1750 億であるのに対し、私たちのモデルでは 60 億です。私たちはモデル Dolly のコードをオープンソース化しています。Dolly を Databricks 上でどのように再作成できるか、今回のブログではこのことについて詳しく解説します。 Dolly のようなモデルは LLM の民主化を促進します。LLM...

Databricks と同等の価格性能を持つという Snowflake の主張に対する反論

データブリックスでは、Databricks SQL のレイクハウスプラットフォームが、 データウェアハウスの公式世界記録を更新 したことを 2021 年 11 月 2 日にブログで発表しました。この結果は、Transaction Processing Performance Council (TPC) によって公式に監査、報告されており、tpc.org にて 37 ページのドキュメントとして オンラインで公開 されています。また、そのブログで、サードパーティのバルセロナ・スーパーコンピューティング・センター(BSC)によるベンチマークテストの結果を共有し、Databricks SQL が競合...

データベースのベンチマーク情報を公開 ― 反競争的 DeWitt 条項を不要に

Databricks では、テクノロジーについて語るときにしばしば「the future is open」(未来はオープン)というフレーズを使用します。オープンなデータアーキテクチャがプロプライエタリなアーキテクチャを凌駕するという私たちの信念を表現したものです(Databricks は先日、 TPC-DS の公式記録を更新 しました)。「オープン」であるべきは、コードだけではありません。業界全体における経営手法や討論も含まれます。多くのテクノロジー企業が、契約の中に DeWitt 条項を入れることでベンチマーク情報の公開を禁じ、自社製品のパフォーマンスに関する情報を制御しようとしています。しかし、私たちは、このような慣行はお客様のためにならず、イノベーションの障壁となる、そろそろ廃止すべきだと考えています。そこで Databricks では、サービス規約から DeWitt 条項を削除し、業界の他の企業にも同様の行動を呼びかけています 。 DeWitt 条項とは Wikipedia には次のように記載されています

Databricks が DWH パフォーマンスの公式記録を更新

Databricks は本日、「 Databricks SQL 」がデータウェアハウス(DWH)のベンチマークである TPC-DS の 100TB クラスで世界記録を更新 したことを発表しました。 Databricks SQL は、これまでの世界記録の 2.2 倍のパフォーマンスを達成。 他の多くのベンチマーク達成ニュースとは異なり、この記録は TPC 評議会によって正式に認められています。 These results were corroborated by...

Delta Lake でのスキーマ(schema)DB の適用・展開とは

September 24, 2019 Burak YavuzBrenner Heintz による投稿 in
データブリックスの Notebook シリーズを試す データは常に進化し、蓄積されていきます。私たち人間の日々の経験と似ているかもしれません。私たちは、自身の周りの世界の変化についていくために、常に新しいデータを取り込み、認識し、ときにはその中から新たな概念や解釈を得ます。このような認識モデルは、まさにテーブルのスキーマそのものです。どちらも、新しく得る情報の分類と処理のしかたを決める役割を持っています。 データベースにおけるスキーマとは : そもそも「スキーマ(schema)」とは、日本人にとっても馴染みのある「スキーム(scheme)」という言葉の派生語です。計画や図などの意味を持ち、データベース関連だけでなく、哲学や心理学で使われている言葉でもあります。この記事で説明するデータベーススキーマ(DBスキーマ)とは、簡単に言えばデータベースの構造や整理の仕方のことです。細かな定義は、データベースの種類や会社によって異なりますので、今回は Databricks の次世代型データレイク・データウェアハウスである、D

Delta Lake を深堀り:トランザクションログの解析

August 21, 2019 Burak YavuzMichael ArmbrustBrenner Heintz による投稿 in
トランザクションログは、ACIDトランザクション、スケーラブルなメタデータ処理、タイムトラベルなど、Delta Lake の最も重要な機能の多くに共通する要素であるため、Delta Lake を理解するうえで重要な鍵となります。この記事では、Delta Lake のトランザクションログとは何か、ファイルレベルでどのように動作するのか、そして、複数の同時読み取りと書き込みの問題に対してどのようにエレガントなソリューションを提供するのかを探ります。 Delta Lake のトランザクションログとは Delta Lakeトランザクションログ(DeltaLog とも呼ばれる)は、Delta Lake テーブルで実行された全てのトランザクションの記録で、その開始以来、順番に記録されています。 トランザクションログの目的 シングルソースオブトゥルース Delta Lake は Apache Spark™ 上に構築されており、あるテーブルの複数のリーダーやライターが同時にテーブル上で作業することを可能にしています。ユーザーに常

機械学習モデル、決定木(ディシジョン・ツリー)による分析を活用した金融詐欺検知の大規模展開

Databricks の Notebook を試してみる 人工知能(AI)を活用した金融不正行為検知の大規模展開は、いかなるユースケースにおいても容易なことではありません。膨大の履歴データの取捨選択、絶えず進化する機械学習と深層学習技術の複雑さ、不正行為の実例の少なさなどが、不正行為パターンの検知を困難にしています。金融サービス業界においては、セキュリティに対する懸念の高まりや、不正行為がどのように特定されたかを説明することの重要性が加わり、複雑さがさらに増大しています。 一般的に、検知パターンを作成するために、まずはドメインエキスパートが不正行為者が行うであろう行為を想定して一連のルールを作成します。ワークフローに金融詐欺検知の専門家を含めて、特定の動作に関する要件をまとめる場合もあります。その後、データサイエンティストは、利用可能なデータのサブサンプルを取得し、これらの要件と、場合によっては既存の金融不正事例を参照して、深層学習または機械学習アルゴリズムのセットを選択します。そして、データエンジニアが、この検