メインコンテンツへジャンプ
<
ページ 2
>

データインテリジェンスを高める:データとAIについて業界リーダー達からの重要な洞察

August 9, 2024 Hiral Jasaniライリー・マリス による投稿 in
Translation Reviewed by Akihiro.Kuwano 今日の急速に進化する技術的な風景では、データと人工知能(AI)の交差点は、業界全体の組織にとって重要な焦点となっています。Foundryの最近の CIO Tech Poll によれば、ITリーダーの大多数が2024年の投資リストのトップにAI対応ソリューションを置き、生成AIに対して興味がないと表明したのはわずか8%でした。AIの優先度が高まることは、データとAIがどのように連携してイノベーションとビジネス価値を推進するかについての深い理解の必要性を強調しています。 この重要なトピックを探求するために、最近、 Informatica、Immuta、Dataikuの業界専門家をフィーチャーしたパネルディスカッションを開催しました 。パネルは、高品質のデータの必要性、新たな規制、全員のための適切なデータ基盤を築く必要性について、実際の顧客シナリオから独自の視点を提供しました。ディスカッションは2つの主要な側面を中心に展開されました: テクノ

Data + AI Summit 2024: データリーダー向けエグゼクティブ サマリー

June 27, 2024 マニッシュ・アガルワル による投稿 in
最近開催された Data + AI Summit 2024 は、当社にとって過去最大規模のサミットとなりました。 16,000 名を超える主要顧客、見込み客、パートナーが直接参加し、さらに 40,000 名以上がバーチャルで視聴しました。 重要な製品発表、トレーニング、認定、パートナー紹介、そして数百のブレイクアウトセッションでいっぱいの 4 日間でした。 最も重要なことは、データと AI コミュニティ全体が団結して学習を共有し、ネットワークを構築し、成果を祝い、データと AI の将来に向けて協力し続ける機会となったことです。 サミットでは、CIO Circleの125人以上の参加者を含む、1,000人以上の技術系エグゼクティブがエグゼクティブフォーラムに集まりました。 Databricksの共同設立者と幹部は、10,000 を超える組織がデータ...

データインテリジェンスとAIトレンド:トップ製品、RAGなどの最新情報

Translation Review by saki.kitaoka 生成AI(GenAI)の熱気は冷める兆しを見せていません。強力なGenAI戦略を実行するためのプレッシャーと興奮が高まる中、データリーダーや実務者は、最適なプラットフォーム、ツール、ユースケースを探しています。 現実の世界ではどのように進行しているのでしょうか?私たちは、業界全体でAIへの取り組みを理解するために、10,000人のグローバル顧客からのデータを活用して 「2024 State of Data + AI」 を発表しました。このレポートでは、データ駆動型企業に関連する幅広いテーマをカバーしていますが、GenAIの旅における明確なトレンドが浮かび上がってきました。 今回の調査で明らかになった主なポイント: トップ10のデータおよびAI製品:GenAIスタックの形成 新しい技術が登場すると、開発者はどのツールが最適かを見極めるために多くの異なるツールを試します。 私たちのトップ10データおよびAI製品は、 Data Intelligenc

データとAI戦略 〜プラットフォームにフォーカスして〜

優れた AI の秘訣は優れたデータです。 AI の導入が急増するにつれ、データ プラットフォームはあらゆる企業のテクノロジー スタックの最も重要なコンポーネントになります。 生成AI システムは単一のモノリシックなものではなく、 連携して機能する さまざまなコンポーネントの組み合わせで あることがますます明らかになっています。データは最も重要な要素の 1 つですが、企業が モデルを 実際に 現実世界に 展開する には、他にも多くの機能が必要です 。 そのため、企業がデータと AI の幅広いニーズをサポートする基盤プラットフォームの構築を検討する際には、...

概要:オープンな基盤モデルの台頭

May 3, 2024 ジョシュ・ハワード による投稿 in
生成 AI アプリケーションを概念実証段階から本番運用段階に移行するには、制御、信頼性、データガバナンスが必要です。 組織は、モデルとトレーニングに使用するデータの両方をより厳密に管理することで、制御と出力へのより良い影響を与える能力を求めて、オープンソースの基盤モデルに注目しています。 Databricks は、何千ものお客様が生成 AI のユースケースを評価し、組織に最適なアーキテクチャを決定するのを支援してきました。 当社の顧客は、多くの場合困難でコストがかかる、本番運用品質のAIモデルの構築と展開の課題を私たちと共有しています。 その結果、ほとんどの CIO はモデルを本番運用に導入することに不安を感じています。 これには、制御、所有権、品質の欠如、予測不可能なパフォーマンス、これらの基本モデルのスケーリングに関連する高いコストなど、さまざまな理由があります。 私たちは顧客の行動の変化に気づきました。 効率性の向上とコストの削減のために、オープンソース モデルを採用する組織が増えています。 これに応えて、

モダンデータスタック:データアーキテクチャの進化がどのようにしてデータインテリジェンスプラットフォームをもたらしたのか

May 1, 2024 マニッシュ・アガルワル による投稿 in
モダンデータスタックは、データの量と複雑さが増加し続ける中で、データの収集、保存、分析の難しさに対処するために設計されています。 ビジネスの成功がデータ主導の洞察とAIに依存するようになるにつれ、効果的で信頼性の高いデータ管理が不可欠です。 では、モダンデータスタックとはどのようなもので、データ活用を最適化するためにどのように設計されているのでしょうか。 モダンデータスタックとレガシーなデータスタックの違い、あらゆる業界のビジネスにもたらすメリット、データから成功を収めるために必要なモダンデータスタックツールについて理解しましょう。 データとAIの目標を加速させる方法については、新しい エグゼクティブ・ガイドを ご覧ください。 モダンデータスタックとはどういう意味ですか? 「データスタック」とは、生データを処理するさまざまなテクノロジーの集合体を指します。 モダンデータスタックは、データの取り込み、整理、保存、変換に使用されるツールで構成されています。 これらのツールは、データを「食べられないデータ」(扱えないデ

データの民主化:信頼されたデータの活用によるビジネスの変革

April 24, 2024 ジョシュ・ハワード による投稿 in
データの民主化は、単なるテクノロジー、技術のバズワードのように聞こえるかもしれませんが、組織が収集するデータは日々増加しており、企業がそこから価値を引き出したいのであれば、データの正確性、信頼性、アクセシビリティを優先する必要があります。 そこで、データの民主化が役立ちます。 しかし、データの民主化とは一体何なのでしょうか。また、高いレベルのガバナンスと信頼を維持しながら、それを達成するにはどうすればよいでしょうか。 データの民主化を成功させるためのステップと、それがビジネスにどのような利益をもたらし、人工知能(AI)戦略をどのようにサポートできるかをご覧ください。 データの民主化とは? データの民主化とは、組織内のすべての人がデータに(適切に)アクセスできるようにすることであり、データを理解するために必要なツールやトレーニングを提供することです。 つまり、すべてのエンドユーザー(従業員、利害関係者、消費者)がデータを扱うことに自信を持ち、特にAIモデルに関して最終結果を信頼できるように、障壁を取り除き、教育を提

ビジネスにおけるAIはデータインテリジェンスでどう変わるか

April 17, 2024 ミン・ヤン による投稿 in
AIは至る所に存在します。携帯電話にも、コンピューターにも、そしてニュースの見出しにも頻繁に登場します。 しかし、すべての見出しの背後で、ビジネスにおけるAIの利用が不可欠となっており、今後もその使用が無くなる兆しはありません。 では、データインテリジェンスの未来は、企業にとってのAIにどのような影響を与えるのでしょうか? 私たちは、AIが現在どのように活用されているのか、今後さまざまな業界でどのように活用される可能性があるのか、また、データ管理システムの内部と外部、そして独自の課題を探ることで、この問いに答え、データインテリジェンスがビジネスにおけるAIの活用にどのような革命をもたらすことができるのかを理解します。 ビジネスにおけるAI活用の現状 ワークフローの合理化からデータ分析まで、AIの活用はあらゆる規模、あらゆる業界のビジネスの主流となっています。 1. よりスマートなリスク管理 明確なリスク管理戦略を持つことは現代企業にとって必須ですが、個人が計画できることは限られています。 利用可能なデータの量が多

データ& AIスキルを最新のサービスで向上させましょう:Databricks Academy Labsとブレンデッドラーニング

Databricks、実習ソリューションとコホート型学習を開始 データ+AIのエキスパートから、 Databricks Academy Labsと ブレンデッド・ラーニングという 、実務家が最先端のテクノロジーを活用するための2つのユニークな方法を発表します。 Databricks Academy Labsは、Databricks環境におけるオンデマンドのハンズオンガイド付きラボ体験です。 ブレンデッド・ラーニングは、あらゆるスタイルの学習者に対応できるよう、自習型とインストラクターによる週1回のセッションの両方を組み合わせ、コースの修了と知識の定着を最適化します。 Databricks Academy Labsとブレンデッドラーニングを組み合わせることで、自分のペースで学習できるものから、実践的、体験的、コホートベースの学習まで、さまざまな学習オプションが可能になります。 これらのコースは、それぞれ異なる学習嗜好に対応し、実りある学習体験ができるよう特別に設計されています。 期間限定で、Databricksはこ

『データ+AI』戦略:人材に焦点をおいて

この記事はシリーズの一部です。 パート1: データ+AIの三位一体:人材、プロセス、 プラットフォームをご覧ください。 人工知能(AI)や大規模言語モデル(LLM)の導入を急ぐあまり、多くのビジネスリーダーやテクニカルリーダーは、根本的なITの見直しにばかり目を向け、このテクノロジーが従業員や将来の働き方にもたらす大きな変化を過小評価しがちです。 プロセスを調整し、適切なプラットフォームを導入する技術的な作業は不可欠ですが、企業内でデータとAIの文化を成功させるには、経営層からエントリーレベルの従業員に至るまで、従業員の賛同も必要です。 すべての従業員が、データとAIを最優先する戦略が各自の役割にもたらす価値、それが生み出すビジネス上の成果、そして最終的には、それが解き放つキャリアの可能性を理解できるようにすることで、ビジネスリーダーは、変化への抵抗を抑え、モダナイゼーションの旅が力強くスタートするよう支援する社内チャンピオンを生み出すことができます。 人材に関する計画について、心に留めておくべきいくつかの成功戦