メインコンテンツへジャンプ
<
ページ 3
>

AIセキュリティリスクの管理:CISOのための新しいワークショップの紹介

AIの導入は、ほとんどの企業にとって必要不可欠である Machine Learning(ML)とジェネレーティブAI(GenAI)は、仕事の未来に革命を起こそうとしている。組織は、AIがイノベーションの構築、競争力の維持、従業員の生産性向上に役立っていることを理解している。同様に、企業は自社のデータがAIアプリケーションに競争上の優位性をもたらすことを理解している。これらのテクノロジーは、組織にとってチャンスであると同時に潜在的なリスクでもある。 顧客との会話では、データ損失、データポイズニング、モデルの盗難、コンプライアンスや規制の課題といったリスクが頻繁に挙げられている。最高情報セキュリティ責任者(CISO)は、こうしたリスクを迅速に軽減しながら、ビジネスのニーズに適応する必要に迫られている。しかし、CISOがビジネスにノーと言えば、チームプレーヤーではなく、企業を第一に考えているとみなされる。逆に、リスクのあることにイエスと言えば、不注意だと思われる。CISOは、ビジネスの成長、多様化、実験に対する意欲に追

独自データを用いたカスタムLLMは、価値ある知的財産を保護しながら、いかにして業務を飛躍的に向上させることができるか?

November 27, 2023 ナヴィーン・ラオ による投稿 in
大規模言語モデル( LLM )は企業の世界を熱狂させ、誰もがその利点を利用したいと考えている。実際、 DatabricksとMIT Technology Reviewがテクノロジー・リーダーを対象に行った最近の調査 によると、企業の47%が今年のAI予算を25%以上増やすと見込んでいる。 このような勢いにもかかわらず、多くの企業は、LLM、AI、機械学習が自社の組織内でどのように利用できるのか、まだ正確には分かっていない。プライバシーやセキュリティに関する懸念は、この不確実性をさらに大きくしている。情報漏洩やハッキングが発生すれば、多額の財務的損失や風評被害を招き、規制当局の監視の目にさらされる可能性があるからだ。 しかし、AIイノベーションを取り入れることで得られる報酬は、リスクをはるかに上回る。適切なツールとガイダンスがあれば、組織は非公開でコンプライアンスに準拠した方法でAIモデルを迅速に構築し、拡張することができる。ジェネレーティブAIが多くの企業の将来に影響を与えることを考えると、モデルの構築とカスタマ

集まれ!Legendary Heroes of DATA + AI !! Vol 6

October 31, 2023 Hisae Inoue による投稿 in
日本のDatabricks Championの皆様に、目指したその理由や、これからの思いについて伺う「集まれ!Legendary Heroes of DATA + AI !!」。Legendary Heroes of Data+AI の皆さんの輪もドンドン広がっています!できる限りこちらでご紹介を続けていきたいと思いますので、是非引き続きご覧ください! さて、今回はVol.6として満を持して登場、 アマゾン ウェブ サービス ジャパン合同会社 本橋 和貴 様 をご紹介します。 —- 以前にご紹介したLegendary...

大手金融機関がデータブリックスを採用したワケは

October 11, 2023 Hisae Inoue による投稿 in
去る6月28日、サンフランシスコで開催されたDATA+AI SUMMITにて、「APJ Partner Champion of the Year」を受賞したDatabricks Champion、NTTデータの齋藤が登壇いたしました。 NTTデータのData+AI Summit参加のレポートはこちら Data and AI Summit 2023 - Databricks 現地レポート(6/27 Partner Summit) - Qiita 今回のセッションでは、大手金融機関であるNTTデータのお客様が、データとAIを活用したデータ分析へと進化していく際、数あるサービスの中から、プラットフォームとして、データブリックスを採用された経緯や、基盤構築の際に苦労したポイントなどを紹介しています。お客様の既存のプラットフォームがどのような課題を抱え、データブリックスにどのような期待を持って導入されたのか。同じような課題をお持ちの企業様に参考にしていただければと思います。...

集まれ!Legendary Heroes of DATA + AI !! Vol 5

August 9, 2023 Hisae Inoue による投稿 in
日本のDatabricks Championの皆様に、目指したその理由や、これからの思いについて伺う「集まれ!Legendary Heroes of DATA + AI !!」。Legendary Heroes of Data+AI の皆さんの輪もドンドン広がっています! 今回は、Vol 5として、前回のVol4 に引き続き 株式会社ナレッジコミュニケーション様 から 山川 将也 様 をご紹介します。 —- 以前にご紹介したLegendary...

集まれ!Legendary Heroes of DATA + AI !! Vol 4 

June 28, 2023 Hisae Inoue による投稿 in
日本のDatabricks Championの皆様に、目指したその理由や、これからの思いについて伺う「集まれ!Legendary Heroes of DATA + AI !!」。前回のポストから早5ヶ月。Legendary Heroes of Data+AI の皆さんの輪もドンドン広がっています! 今回は、Vol 4として、 株式会社ナレッジコミュニケーション 小山 翼 様 をご紹介します。 —- 以前にご紹介したLegendary Heroes of...

エグゼクティブのためのデータ、アナリティクス、AI変革ガイド 第5回:情報に基づいたビルドと購入の意思決定

Original : The Executive’s Guide to Data, Analytics and AI Transformation, Part 5: Make informed build vs. buy decisions translate by junichi.maruyama データおよびAIトランスフォーメーション戦略の重要な要素として、データエコシステムのどのコンポーネントを社内のエンジニアリングチームが構築し、どのコンポーネントをベンダーとの関係を通じて購入するかを決定することが挙げられます。エンジニアリング・チーム内では、「ビルダー」アプローチを取ることが重視されるようになってきています。つまり、エンジニアリング・チームは、ベンダー製品に依存するのではなく、自社で独自のソリューションを開発することを好むのです。...

エグゼクティブのためのデータ、アナリティクス、AI変革ガイド 第4回:ガバナンスで良質なデータへのアクセスを民主化する

The Executive’s Guide to Data, Analytics and AI Transformation, Part 4: Democratize access to quality data with governance 翻訳: junichi.maruyama 本記事は、データとAIの変革イニシアチブを率いるシニアエグゼクティブと重要な洞察と戦術を共有する複数回シリーズのパート4です。シリーズのパート3は こちら でお読みいただけます。...

エグゼクティブのためのデータ、アナリティクス、AI変革ガイド 第3回:データチームの成功するオペレーティングモデルの構築

Original Blog : The Executive’s Guide to Data, Analytics and AI Transformation, Part 3: Build Successful Operating Models for Data Teams 翻訳: junichi.maruyama...

エグゼクティブのためのデータ、アナリティクス、AI変革ガイド 第1回: モダナイゼーションのためのBlueprint

Original Blog : The Executive’s Guide to Data, Analytics and AI Transformation, Part 1: A blueprint for modernization 翻訳: junichi.maruyama 今、組織はこれまで以上に、市場機会や新たなリスクに迅速に適応し、現代のダイナミックな経済において適応し、革新し、繁栄するためのより良い地位を築く必要があります。ビジネスリーダーは、デジタルトランスフォーメーションは、コストを削減し、ビジネス価値を高めながら、ビジネスを実行するための新しいテクノロジー基盤を構築する機会であると捉えています。 しかし、相反する組織の優先順位、レガシーベースの情報システム、バラバラのデータ環境は、その実現を困難にしています。そのため、データ、アナリティクス、AIのエグゼクティブは、最新のデータアーキテクチャを容易に導入・移行できるような包括的な戦略を策定し、実行する必要があります。このブログシリーズでは、ご自身の