メインコンテンツへジャンプ
<
ページ 3
>

AIセキュリティリスクの管理:CISOのための新しいワークショップの紹介

AIの導入は、ほとんどの企業にとって必要不可欠である Machine Learning(ML)とジェネレーティブAI(GenAI)は、仕事の未来に革命を起こそうとしている。組織は、AIがイノベーションの構築、競争力の維持、従業員の生産性向上に役立っていることを理解している。同様に、企業は自社のデータがAIアプリケーションに競争上の優位性をもたらすことを理解している。これらのテクノロジーは、組織にとってチャンスであると同時に潜在的なリスクでもある。 顧客との会話では、データ損失、データポイズニング、モデルの盗難、コンプライアンスや規制の課題といったリスクが頻繁に挙げられている。最高情報セキュリティ責任者(CISO)は、こうしたリスクを迅速に軽減しながら、ビジネスのニーズに適応する必要に迫られている。しかし、CISOがビジネスにノーと言えば、チームプレーヤーではなく、企業を第一に考えているとみなされる。逆に、リスクのあることにイエスと言えば、不注意だと思われる。CISOは、ビジネスの成長、多様化、実験に対する意欲に追

独自データを用いたカスタムLLMは、価値ある知的財産を保護しながら、いかにして業務を飛躍的に向上させることができるか?

November 28, 2023 ナヴィーン・ラオ による投稿 in
大規模言語モデル( LLM )は企業の世界を熱狂させ、誰もがその利点を利用したいと考えている。実際、 DatabricksとMIT Technology Reviewがテクノロジー・リーダーを対象に行った最近の調査 によると、企業の47%が今年のAI予算を25%以上増やすと見込んでいる。 このような勢いにもかかわらず、多くの企業は、LLM、AI、機械学習が自社の組織内でどのように利用できるのか、まだ正確には分かっていない。プライバシーやセキュリティに関する懸念は、この不確実性をさらに大きくしている。情報漏洩やハッキングが発生すれば、多額の財務的損失や風評被害を招き、規制当局の監視の目にさらされる可能性があるからだ。 しかし、AIイノベーションを取り入れることで得られる報酬は、リスクをはるかに上回る。適切なツールとガイダンスがあれば、組織は非公開でコンプライアンスに準拠した方法でAIモデルを迅速に構築し、拡張することができる。ジェネレーティブAIが多くの企業の将来に影響を与えることを考えると、モデルの構築とカスタマ

テールゲートをするかしないか?:Databricks + AccuWeatherがMLを使ってフットボールファンの熱い疑問に答えた方法

NFLの熱狂的ファンであれ、母校を応援するOBであれ、テイラー・スウィフトを一目見ようとするスーパーファンであれ、フットボール・シーズンはアメリカで1年で最もエキサイティングな時期のひとつである。 そして、その楽しみ方にも事欠かない。 何百万人もの視聴者が自宅のソファや近所のバーでくつろぎながら観戦する一方で、多くの視聴者はお気に入りのチームの試合を見るために、時には氷点下の気温の中、スタジアムまで足を運ぶ。 また、チームと一緒に新しい都市を訪れたいと思う人もいるだろう。 しかし、ファンにとっては、1シーズン分の試合からどれを選ぶかを決めるのは大変なことなのだ。 お客様の「最も困難な問題」を解決するDatabricksの精神に則り、私たちはデータと機械学習の力を活用し、NFLや大学のフットボールファンがテールゲーティングで最も得をする方法を予測する手助けをしたいと考えました。 このブログポストでは、Databricks Lakehouse Platform(Databricks AutoMLと Databrick

集まれ!Legendary Heroes of DATA + AI !! Vol 6

October 31, 2023 Hisae Inoue による投稿 in
日本のDatabricks Championの皆様に、目指したその理由や、これからの思いについて伺う「集まれ!Legendary Heroes of DATA + AI !!」。Legendary Heroes of Data+AI の皆さんの輪もドンドン広がっています!できる限りこちらでご紹介を続けていきたいと思いますので、是非引き続きご覧ください! さて、今回はVol.6として満を持して登場、 アマゾン ウェブ サービス ジャパン合同会社 本橋 和貴 様 をご紹介します。 —- 以前にご紹介したLegendary...

データとAIに関する三位一体とは:ピープル、プロセス、プラットフォーム

翻訳:Ryo Hasegawa. - Original Blog Link ビジネスリーダーは皆、同じ質問をしています: データとAIに関する自社の計画を加速させるにはどうすればいいのか?ビジネスをリスクにさらすことなく、大規模な言語モデル(LLM)を活用するにはどうすればいいのか?そして、これらのシステムからできるだけ早く価値を得るにはどうすればいいのか? 誰もが、誇大広告による混乱を回避し、自社のデータをどのように収益化し、前例のないスピードのテクノロジーを活用できるかを把握したいと考えています。より多くの業務を自動化し、より付加価値の高い業務に集中できるようにしたいからです。古いデータの照会にとどまらず、より良い未来像を得たいと考えています。セキュリティ・リスクを最小限に抑えながら、可能な限りコストを削減したい。そしてもちろん、今すぐ結果を出したいのです。 しかし、データとAIに関しては、成功のための戦略は企業ごとに異なるでしょう。私たちはDatabricksのフィールドCTOとして、データスタックをモダナ

データとAIにおけるオペレーティングモデルと実践

October 22, 2023 ファビアン・ランツ による投稿 in
翻訳:Ryo Hasegawa. - Original Blog Link このBlogシリーズの パート1 では、Databricksがどのように企業のデータとAIから価値を引き出すプロセスを開発、管理、運用を可能にするかについて説明しました。今回は、チーム構成、チームダイナミクス、責任について焦点を当てます。ターゲット・オペレーティング・モデル(TOM)を成功させるためには、組織内のさまざまな部署やチームが協力し合う必要があります。 Databricksに入社する前、私はコンサルティングに携わり、クラウドネイティブからオープンソースまで、様々な業界や様々なテクノロジースタックを使ってAIプロジェクトに携わってきました。基礎となるテクノロジーは異なりますが、これらのアプリケーションの開発と実行に関わる役割はほぼ同じでした。チーム内の1人が、作業の規模や複雑さに応じて複数の役割を担うことができることも事実です。 エンジニアリング、データサイエンス、アナリストのような異なるチームや異なる役割を持つ人々が、同じツール

レイクハウス・センターオフエクセレンス(CoE): データAIビジネスで成功する4つの原則

翻訳:Ryo Hasegawa. - Original Blog Link Databricksのミッションは「データ分析とAIを民主化する」ことです。このステートメントは、データエキスパートの日常業務に意味を与えるだけでなく、今日のデータとAI分野において、スケールすることが難しいという現状を反映した適切なものと言えます。 McKinsey 、 Deloitte 、 Accenture などによる複数の独立した調査や研究ノートも、同じ結論を示しています。データとAIの需要と関心はかつてないほど高まっていますが、ほとんどの企業はデータとAIをスケールしてエンタープライズレベルの価値をを達成するのに苦労しているのは事実です。 2022年にアクセンチュアが発表した「 AI成熟に関するアート 」と呼ばれるレポートもそのひとつで、強力な競争優位性を実現し、データおよびAIの達成者と呼べる企業は、調査対象となった1,200社のうち、わずか12%に過ぎないことが示されました。つまり、88%の企業がデータとAIの本当の価値を引

大手金融機関がデータブリックスを採用したワケは

October 12, 2023 Hisae Inoue による投稿 in
去る6月28日、サンフランシスコで開催されたDATA+AI SUMMITにて、「APJ Partner Champion of the Year」を受賞したDatabricks Champion、NTTデータの齋藤が登壇いたしました。 NTTデータのData+AI Summit参加のレポートはこちら Data and AI Summit 2023 - Databricks 現地レポート(6/27 Partner Summit) - Qiita 今回のセッションでは、大手金融機関であるNTTデータのお客様が、データとAIを活用したデータ分析へと進化していく際、数あるサービスの中から、プラットフォームとして、データブリックスを採用された経緯や、基盤構築の際に苦労したポイントなどを紹介しています。お客様の既存のプラットフォームがどのような課題を抱え、データブリックスにどのような期待を持って導入されたのか。同じような課題をお持ちの企業様に参考にしていただければと思います。...

集まれ!Legendary Heroes of DATA + AI !! Vol 5

August 9, 2023 Hisae Inoue による投稿 in
日本のDatabricks Championの皆様に、目指したその理由や、これからの思いについて伺う「集まれ!Legendary Heroes of DATA + AI !!」。Legendary Heroes of Data+AI の皆さんの輪もドンドン広がっています! 今回は、Vol 5として、前回のVol4 に引き続き 株式会社ナレッジコミュニケーション様 から 山川 将也 様 をご紹介します。 —- 以前にご紹介したLegendary...

集まれ!Legendary Heroes of DATA + AI !! Vol 4 

June 29, 2023 Hisae Inoue による投稿 in
日本のDatabricks Championの皆様に、目指したその理由や、これからの思いについて伺う「集まれ!Legendary Heroes of DATA + AI !!」。前回のポストから早5ヶ月。Legendary Heroes of Data+AI の皆さんの輪もドンドン広がっています! 今回は、Vol 4として、 株式会社ナレッジコミュニケーション 小山 翼 様 をご紹介します。 —- 以前にご紹介したLegendary Heroes of...