メインコンテンツへジャンプ
<
ページ 2

ヘルスケア領域におけるデータドリブン・タレントインテリジェンス戦略とは?

このブログは、People Data Labsのイノベーション担当副社長であるベン・アイゼンバーグ氏と、LinkUpのChief Revenue Officerであるトム・アシェンマッカー氏との共同執筆によるものです。 あらゆる業界において、優秀な人材に対する需要は常に供給を上回っている。 例えば、バイオテクノロジー業界では、data scientists から生物医学エンジニアに至るまで、あらゆる職務において高度に専門化されたスキルが要求される。 ITこの分野の爆発的な成長(最近の成長率は 79%であるのに対し、 他の職種は8%である)により、これらの組織が熟練労働者を最も必要としているのは当然のことである。 人事・採用チームは、最高の人材を調達し、惹きつけ、維持するための革新的なデータドリブンソリューションを常に模索している。 結局のところ、組織の競争力の源泉は、提供する製品やサービスだけではないのだ。IT 、アイデアを実現する人的資本である。 マッキンゼーの調査に よると、 組織の上位25~50の役割が、企

ヘルスケア領域におけるPHIデータのガバナンスの自動化

November 29, 2023 アーロン・ザヴォラ による投稿 in
背景:データデリバリーの近代化 今日の企業のデータ資産は、10年前とは大きく異なっています。各業界のアナリティクスは、モノリシックなデータプラットフォーム(リレーショナル・データベースやデータウェアハウス・アプライアンスなど)から、分散型でスケーラブルな、ほぼ無限のコンピューティングおよびストレージ機能(データレイクなど)へと移行しています。また、データは指数関数的なペースで増加しており、相互運用性の新たな機能を推進し、これまで以上に接続されたエコシステムを構築し、データが私たちの生活様式を形成する新たな機会を引き出しています。 データ資産のこの劇的な変化は、急速なペースで指数関数的なデータ配信の課題に対応するための新しい方法を見つける必要性をチームに促しています。その結果、 データメッシュ のようなフレームワークが人気を博し、成功を収めています。その中核となるデータメッシュは、セルフサービスによるデータデリバリーでビジネスチームのボトルネックを軽減し、「データを製品として」扱うことで、データインサイトの最大化を

高度なアナリティクスによる電子事前承認の近代化

このブログは、ZS社ソリューションデリバリーマネージャー、ダン・ニューインガム氏、Databricks社HLSテクニカルディレクター、アーロン・ザボラ氏との共同執筆によるものです。 電子事前承認の 義務化とバリュー・ベースド・ケア(VBC)の取り決めによる償還パターンの進化により、医療保険制度が会員のためにサービスを承認する方法が変化している。 患者の転帰を改善し、事前承認にまつわる増大する管理上の問題を回避し、ビジネスに有意義なROIをもたらすような、増え続けるユースケースでデータを活用する絶好の機会が存在する。 拡大する事前承認の問題 Prior Authorizationは、処置、処方、耐久性医療機器(DME)などの医療サービスの適切な利用を確保するために、医療保険制度によって実施されるプログラムである。 これらのプログラムは、患者のために質の高い結果を維持しながら、不必要なサービスを減らすように設計されている。 質の高い患者の転帰を確保しながらサービスを制限するバランスは、データ& AIを使用しな

ヘルスケアの未来はデータコラボレーションにかかっている:IQVIAとDatabricks Lakehouseでどのようにより良いアウトカムが実現されるか

June 22, 2023 Bill ZanineMichael Sankyアダム・クラウン による投稿 in
Original Blog: The future of healthcare relies on data collaboration: how IQVIA and the Databricks Lakehouse enable better outcomes 翻訳: motokazu.ishikawa ヘルスケアデータを取り込み、統合し、共有する能力は、新たなイノベーションを推進し、医学研究を進め、患者のアウトカムを改善する上で基礎的な役割を果たします。世界中のすべての人が毎年約270 GBものヘルスケアおよびライフサイエンス・データを生成すると予想される中[...

サイバーセキュリティアプリケーション向けDatabricks Lakehouseプラットフォーム

翻訳: Masahiko Kitamura 具体的なコードはIOCマッチングのソリューションアクセラレータの GitHub reo を参照ください。また、本ソリューションのPOC・トライアルについては [email protected] までご連絡ください。 金融機関、医療機関、政府機関がデータをクラウドに移行し、IoTセンサーや相互接続されたデバイスが増加しているため、サイバーセキュリティは依然として重要なデータ課題となっています。地政学的な脅威が続く中、企業は、大量のデータの処理、複雑なデータ処理タスク(人工知能や機械学習などの高度な分析機能を含む)のサポート、費用対効果の高い拡張が可能なDatabricks Lakehouseプラットフォームをサイバー業務に採用しています。Databricks Lakehouseプラットフォームは、データ、アナリティクス、AIを単一のプラットフォームで統合した、サイバーセキュリティ業界の隠れた標準基盤になっています。 企業やサイバーセキュリティベンダー

データレイクにライフサイエンスの知識グラフを構築する

本投稿はDatabricksとwisecube.aiの共同によるものです。創業者のVishnu Vettrivel、プリンシパル・データサイエンティストのAlex Thomasへの貢献に感謝します。 Original Blog : Building a Life Sciences Knowledge Graph with a Data Lake 翻訳 : motokazu.ishikawa 製薬企業は世界の最も深刻な疾患のいくつかに対して、画期的な医薬品を発見し開発し市販します。研究開発におけるデータドリブンなアプローチは創薬とともに治験での安全管理の成功率も改善します。しかしながら、この改革における主要な障害は、新しいデータが増加するペースに、科学的な情報を全て活用する能力が追いつかないということです。 研究開発のデータはしばしば何百万のデータポイントと何千のデータソースから生じます。これには、ゲノミクスやプロテオミクスのようなハイスループットな技術、利用が増加している電子健康記録(EHR)、その他のデジタルデ