メインコンテンツへジャンプ
<
ページ 2
>

現代の臨床試験データインテリジェンスプラットフォームの構築

November 14, 2024 オレクサンドラ・ボフクンネハ・パンデ による投稿 in
データが医療の進歩の命綱となる時代において、臨床試験業界は重要な岐路に立たされています。臨床データ管理の現状は、イノベーションを阻害し、命を救う治療法の遅延を引き起こす可能性のある課題に満ちています。 今、我々は前例のない情報の洪水に直面しています。典型的なフェーズIII試験では、現在360万のデータポイントが生成され、これは15年前の3倍以上であり、毎年4000以上の新しい試験が承認されています。この結果、既存のデータプラットフォームはその負荷に耐えられなくなっています。これらの旧式なシステムは、データの孤立、統合の不十分さ、複雑さの極みといった特徴を持ち、研究者、患者、そして医学の進歩自体を阻害しています。この状況の緊急性は、厳しい統計によって強調されています:約80%の臨床試験が募集の課題により遅延または早期終了を迎えており、研究サイトの37%が十分な参加者を募集するのに苦労しています。 これらの非効率性は、製品の開発と発売が遅れるたびに、潜在的な損失が毎日60万ドルから800万ドルに達するという高額なコス

Providence Health:Databricks Mosaic AIを使用したML/AIプロジェクトのスケーリング

Providence Healthの広範なネットワーク は50以上の病院と複数の州にまたがるその他の施設を包含しており、特定の部門内での患者数と日々の患者数を予測することは多くの課題を伴います。この情報は、短期および長期のスタッフニーズ、患者の転送、一般的な運用認識についての情報提供を行うために重要です。Databricksの採用初期段階では、Providenceは新しいリクエストを迅速に進め、探索を支援し、多くの場合初期の予測を提供するシンプルな基準患者数モデルを作成することを目指しました。また、この患者数をほぼリアルタイムで数千の部門をサポートするようにスケーリングするには一部の作業が必要だと認識しました。 私たちは、 Databricks Mosaic AI ツールの実装を開始しました Databricks AutoML を使用しています。スケジュールされたワークフローが実行されるたびに、数行のコードから自動的に予測を実行する能力を高く評価しました。AutoMLは詳細なモデル設定を必要とせず、データを初めて

DatabricksとMathworksを使用したMATLABおよびSimulinkモデルのスケーリング

あなたがヘルスケア、航空宇宙、製造業、政府などのどの業界から来ていても、ビッグデータという言葉は見知らぬものではないでしょう。しかし、そのデータが現在のMATLABまたはSimulinkモデルにどのように統合されるかは、今日あなたが直面している課題かもしれません。これが DatabricksとMathworkのパートナーシップ が2020年に構築され、顧客が大規模なデータからより迅速に有意義な洞察を得るための支援を続けている理由です。これにより、エンジニアは新しいコードを学ぶことなくMathworksでアルゴリズム/モデルの開発を続けることができ、Databricks Data Intelligence Platformを利用して、それらのモデルをスケールしてデータ分析を行い、モデルを反復的に訓練しテストすることができます。 例えば、製造業では、予測保守が重要なアプリケーションです。エンジニアは、MATLABの高度なアルゴリズムを利用して機械データを分析し、潜在的な設備の故障を驚くほど正確に予測することができます

FHIRを使ってデータとAI活用を加速しましょう!

October 25, 2024 アーロン・ザヴォラアドナン・ジャベル による投稿 in
DatabricksとXponentLのパートナーシップが、顧客が自分たちのFHIRニーズを解放することをどのように可能にしているかを発見してください。 dbignite についてもっと学びましょう。 あなたが体調を崩していると想像してみてください。患者として、あなたは最小限の摩擦であなたの病気を対処したいと思っているので、あなたはすぐに完全な健康に戻ることができます。 あなたが選択する医療施設(緊急治療、一般診療医のオフィス、病院)や、あなたが診察を受ける医療提供者に関係なく、ケアチームがあなたの全体的な患者旅行データにアクセスする能力は、効率的かつ効果的な治療を確保するためにこれまで以上に重要となっています。 ヘルスケアは膨大な量のデータを保有しています。実際、ヘルスケア業界は、 世界のデータの30% を生成すると言われています。プロバイダーとの各エンカウンターは、あなたの健康ストーリーのパン粉を生成します。プロバイダーがこのデータをキャプチャするために使用するシステムの数を考えると、あなたの包括的な健康スト

Logically AIでGPU推論をターボチャージ!

2017年に設立された Logically は、AIを使用してクライアントのインテリジェンス能力を強化する分野のリーダーです。ウェブサイト、ソーシャルプラットフォーム、その他のデジタルソースから大量のデータを処理し分析することで、Logicallyは潜在的なリスク、新たな脅威、重要なナラティブを特定し、それらをサイバーセキュリティチーム、プロダクトマネージャー、エンゲージメントリーダーが迅速かつ戦略的に行動できるように整理します。 GPU加速はLogicallyのプラットフォームの重要な要素であり、高度に規制されたエンティティの要件を満たすためのナラティブの検出を可能にします。GPUを使用することで、Logicallyは訓練と推論の時間を大幅に短縮し、ソーシャルメディアやインターネット全体での偽情報の拡散を防ぐために必要なスケールでのデータ処理を可能にしました。現在のGPUリソースの不足も、最適なレイテンシとAIプロジェクトの全体的な成功を達成するために、その利用を最適化することが重要であることを意味します。 ロ

PentavereとDatabricksによるヘルスケアデータの洞察

金融や小売などの業界では、大量のデータが利用されて数十億ドルの利益を生み出しています。しかし、ヘルスケアでは、重要な情報へのアクセスが困難であり、これが直接的に患者の結果に影響を与えています。根本的な問題は何でしょうか? 医療データの80%以上 がリスクのある患者を特定し、予防ケアを提供するためのもので、非構造化されています。これは医師のノート、放射線画像、病理スライド、PDFファイル、ファクス、PowerPointスライド、メールに隠されており、アクセスして利用するのが困難で高価です。 データインテリジェンスによる患者のアウトカムの改善 医療機器、遺伝子検査、患者が生成する健康データ、広範囲にわたる電子健康記録(EHR)の使用の増加により、 ヘルスケアデータの生成が年間47%増加 しています。人工知能(AI)は、ヘルスケアデータの命を救う可能性を解き放つ明らかな解決策のように思えます。しかし、臨床的な洞察を可能にするAIツールを構築し、検証する際には複雑な要件があります: 広範な治療領域にわたる大量のデータへの

一般主義者から専門家へ:AIシステムの進化は複合AIへ!

October 1, 2024 ヤレド・グデタ による投稿 in
複合AIシステムに対する バズ は現実であり、それには十分な理由があります。複合AIシステムは、複数のAIモデル、ツール、システムの最良の部分を組み合わせて、単一のAIでは効率的に対処するのが難しい複雑な問題を解決します。 振り返る:モノリシックからマイクロサービスへ 複合AIシステムの魔法に飛び込む前に、少し戻ってアプリケーション開発がどのように進化してきたかを探ってみましょう。モノリシックなアプリケーションの日々を覚えていますか?これらは巨大な、一体型のソフトウェアシステムで、フロントエンドのインタラクション、バックエンドの処理、データベース管理を一つのコードベース内で処理していました。彼らは強力でしたが、欠点もありました。 モノリシックアーキテクチャの課題: 遅い更新 : アプリケーションの一部を少し修正するだけで、システム全体を再デプロイする必要がありました。 スケーリングの問題 : システムの一部が重負荷になると、システム全体をスケールアップしなければなりませんでした。 単一の障害点 : 一つのコンポー

カスタムのテキストからSQL生成するアプリケーションで金融のインサイトを解き放つ!

序章 取得強化生成(RAG)は、大規模言語モデル(LLM)を使用して企業が非構造化知識ベースを活用する方法を革新し、その可能性は広範に影響を及ぼします。 インターコンチネンタルエクスチェンジ(ICE) は、世界最大の証券取引所グループであるニューヨーク証券取引所(NYSE)を含む、取引所、クリアリングハウス、データサービス、住宅ローン技術を運営するグローバルな金融組織です。 ICEは、既存のアプリケーションからのデータ移動を必要とせずに、構造化されたRAGパイプラインを持つことで、構造化データ製品の自然言語検索のシームレスなソリューションを先駆的に開発しています。このソリューションは、エンドユーザーがデータモデル、スキーマ、またはSQLクエリを理解する必要性を排除します。 ICEチームはDatabricksエンジニアと協力して、Databricks Mosaic AI製品のフルスタック( Unity Catalog , Vector Search , Foundation Model APIs , and Mod

AVEVA World Conference:AVEVA&amp; Databricksによる産業AIの再定義

October 1, 2024 シヴ・トリサルケイトリン・ゴードン による投稿 in
今後の AVEVA World Conference (10月14日から17日までパリで開催)は、Databricksがこの新しいパラダイムを形成する中心的な役割を果たすことで、産業用AIの未来にとって画期的なイベントになることが予想されます。私たちの 戦略的協力 を基に、DatabricksとAVEVAは、私たちの組み合わせた技術が世界中の産業組織で前例のない結果をもたらしている方法を示す予定です。 セッションのハイライト このカンファレンスで最も期待される瞬間の一つは、Databricksの共同創設者でCTOのMatei ZahariaとAVEVAのCEO、Caspar Herzbergによる共同基調講演です。このセッションでは、産業AIの変革的な可能性と、私たちのパートナーシップがどのように接続された産業エコシステムの基盤を築いているかについて探求します。 出席者は、製造業&エネルギー部門のDatabricksグローバルインダストリーリーダー、Shiv Trisalが主導するセッションを見逃すことはありませ

ゲーム業界向け『AI パワード BI』のご紹介

September 24, 2024 Huntting Buckleyダンカン・デイビス による投稿 in
「よくダッシュボードの作成を依頼されるのですが、依頼内容がはっきりしていないことが多く、たとえ依頼者と会話をしても完全に理解できない場合があります。そのため、こちらで何かを作成しても、期待に合わずに最初からやり直したり、修正を重ねる必要が出てくることがあります。ここで興味深いのは、1) 依頼者自身で解答を見つけられる可能性があること、そして2) さらに重要かもしれないのは、依頼者が自分の探しているものに近いものを見つけることで、それを元に私たちのチームへの依頼内容を具体化できるという点です。」 - AAAスタジオのデータリーダー はじめに 2023年11月にDatabricksの次の進化「The Data Intelligence Platform」を発表した際、機械学習や生成AI(GenAI)などの機能をプラットフォームに統合する計画を共有しました。これにより、皆さんの生産性を向上させ、データから生み出せる価値をさらに高めることができます。本ブログでは、データインサイトの生成を民主化することを目指した機能の一つ