メインコンテンツへジャンプ
<
ページ 2
>

bpが目指す統一データガバナンスへの道

* 効果的なデータガバナンスは、組織がデータ資産を活用するためには不可欠です。 * bpがDatabricks Unity Catalogをどのように使用してデータガバナンスフレームワークを強化しているか、課題、戦略、利点を強調して学びましょう。

プライベートエクイティのポートフォリオ収益を向上させます!

エグゼクティブサマリー 本ブログでは、プライベートエクイティ(PE)企業がデータインテリジェンスを活用してポートフォリオ収益を向上させる方法を探ります。PE企業が新規企業を買収する際に直面するデータの可視性、統合、標準化の課題を取り上げ、それに対するソリューションとして、Databricks Data Intelligence Platformを紹介します。このプラットフォームは、統合されたオープンクラウドデータプラットフォーム、データレイクハウスアーキテクチャ、AIと機械学習機能、安全なデータ共有を提供します。Databricksを採用することで、PE企業は業務を効率化し、コストを削減し、洞察を深め、ポートフォリオ企業全体で持続可能な成長を促進できます。 導入 プライベートエクイティ会社は、ビジネスのためのエリートパーソナルトレーナーのようなものです。彼らは大規模な改善が必要な企業を特定し、カスタマイズされたエクササイズと栄養計画を設計し、それらをリーンで高性能なパワーハウスに変えます。資本を注入し、戦略的なコ

製造業を変革する自動化されたワークフローの革命とは?

November 26, 2024 エザナ・タデセ による投稿 in
現代の製造業者にとって、効率化され自動化されたワークフローは、手動データ管理や設備のダウンタイムなどの課題を克服するために不可欠です。自動化されたワークフローを活用し、予測保守を可能にすることで、製造業者は非効率性と廃棄物を減らすリアルタイムの生産洞察を得ることができます。データのサイロ化の排除と分析のスケーリング能力は、より良い意思決定を可能にし、増大する運用データの量をサポートします。データ駆動の風景では、自動化されたワークフローはビジネス成功のために不可欠となり、データ実践者が反応的な問題解決から積極的なイノベーションへとシフトすることを可能にします。 Databricks Workflows は、データ、分析、AIの統一されたオーケストレーションツールで、ETL、分析、機械学習パイプラインの自動化ワークフローを簡単に定義、管理、監視することで、データチームの増大する要求に対応するのに役立ちます。データインテリジェンスプラットフォームと完全に統合されたWorkflowsは、シンプルなワークフロー定義体験、高

TealiumとDatabricks:リアルタイムの洞察とAI駆動の顧客体験を提供

TealiumがDatabricksを使用して、リアルタイムのストリーミングCustomer Data Platform(CDP)の要素をどのように動かしているかを学びましょう。このプラットフォームは、クライアントに包括的な顧客洞察を提供し、パーソナライズされたマーケティングと顧客エンゲージメントを可能にします。Databricks Mosaic AIを使用すると、Tealiumは予測的なMLモデルの構築から最新のGenAIアプリのデプロイまで、AIとMLソリューションを安全に構築、デプロイ、評価、管理することができます。

Xcel Energy:Databricks上でRAGベースのチャットボットを開発

"私たちはMLFlowトレーシングの機能をより深く探求しています。この機能は、パフォーマンスの問題を診断し、カスタマーコールサポートチャットボットからの応答の質を向上させるために重要な役割を果たします。さらに、私たちはいくつかのエキサイティングなプロジェクトに取り組んでいます。これには、私たちの野火LLMのフィードバックループを確立し、エージェントベースのRAGイニシアチブをより多く実装することが含まれます。私たちの目標は、LLMをXcel全体でよりアクセシブルにすることも含まれており、チームがタグ付け、感情分析、その他必要なアプリケーションなどのタスクにそれらを利用できるようにします。"- ブレイク・クラインハンス、シニアデータサイエンティスト、Xcel Energy 序章 Xcel Energy は、 コロラド州、ミシガン州、ミネソタ州、ニューメキシコ州、ノースダコタ州、サウスダコタ州、テキサス州、ウィスコンシン州の8つの州で340万人の電気顧客と190万人の天然ガス顧客にサービスを提供する主要な電気・天然ガ

ビジネスユーザーを支えるセルフサービス型データインテリジェンスの実現

November 25, 2024 Ricardo Portilla による投稿 in
はじめに データは力です。しかし、リテールバンキングにおいては、その力を行動可能なインサイトに変えると同時に、データセキュリティのリスクを慎重に管理することが求められます。金融機関は、機密データを保護しながらも、データの民主化を取り入れて顧客体験を向上させ、リスクを軽減し、イノベーションを推進するというバランスを取らなければなりません。 Sigma Computing は次世代の分析およびビジネスインテリジェンスプラットフォームとして、安全なアプローチを提供し、顧客セグメンテーションからリスク評価までのインサイトを銀行が活用できるようにします。そして、それを実現する際にセキュリティを妥協することはありません。 ここからは、DatabricksとSigma Computingがどのようにこれらの重要なユースケースを支援し、銀行がより賢く、安全な意思決定を行えるようにしているかを掘り下げていきます。 データインテリジェンスは銀行業界の新たな生命線 NubankのようなデジタルバンクやWiseやBrexのようなフィンテ

現代の臨床試験データインテリジェンスプラットフォームの構築

November 14, 2024 オレクサンドラ・ボフクンネハ・パンデ による投稿 in
データが医療の進歩の命綱となる時代において、臨床試験業界は重要な岐路に立たされています。臨床データ管理の現状は、イノベーションを阻害し、命を救う治療法の遅延を引き起こす可能性のある課題に満ちています。 今、我々は前例のない情報の洪水に直面しています。典型的なフェーズIII試験では、現在360万のデータポイントが生成され、これは15年前の3倍以上であり、毎年4000以上の新しい試験が承認されています。この結果、既存のデータプラットフォームはその負荷に耐えられなくなっています。これらの旧式なシステムは、データの孤立、統合の不十分さ、複雑さの極みといった特徴を持ち、研究者、患者、そして医学の進歩自体を阻害しています。この状況の緊急性は、厳しい統計によって強調されています:約80%の臨床試験が募集の課題により遅延または早期終了を迎えており、研究サイトの37%が十分な参加者を募集するのに苦労しています。 これらの非効率性は、製品の開発と発売が遅れるたびに、潜在的な損失が毎日60万ドルから800万ドルに達するという高額なコス

Providence Health:Databricks Mosaic AIを使用したML/AIプロジェクトのスケーリング

Providence Healthの広範なネットワーク は50以上の病院と複数の州にまたがるその他の施設を包含しており、特定の部門内での患者数と日々の患者数を予測することは多くの課題を伴います。この情報は、短期および長期のスタッフニーズ、患者の転送、一般的な運用認識についての情報提供を行うために重要です。Databricksの採用初期段階では、Providenceは新しいリクエストを迅速に進め、探索を支援し、多くの場合初期の予測を提供するシンプルな基準患者数モデルを作成することを目指しました。また、この患者数をほぼリアルタイムで数千の部門をサポートするようにスケーリングするには一部の作業が必要だと認識しました。 私たちは、 Databricks Mosaic AI ツールの実装を開始しました Databricks AutoML を使用しています。スケジュールされたワークフローが実行されるたびに、数行のコードから自動的に予測を実行する能力を高く評価しました。AutoMLは詳細なモデル設定を必要とせず、データを初めて

DatabricksとMathworksを使用したMATLABおよびSimulinkモデルのスケーリング

あなたがヘルスケア、航空宇宙、製造業、政府などのどの業界から来ていても、ビッグデータという言葉は見知らぬものではないでしょう。しかし、そのデータが現在のMATLABまたはSimulinkモデルにどのように統合されるかは、今日あなたが直面している課題かもしれません。これが DatabricksとMathworkのパートナーシップ が2020年に構築され、顧客が大規模なデータからより迅速に有意義な洞察を得るための支援を続けている理由です。これにより、エンジニアは新しいコードを学ぶことなくMathworksでアルゴリズム/モデルの開発を続けることができ、Databricks Data Intelligence Platformを利用して、それらのモデルをスケールしてデータ分析を行い、モデルを反復的に訓練しテストすることができます。 例えば、製造業では、予測保守が重要なアプリケーションです。エンジニアは、MATLABの高度なアルゴリズムを利用して機械データを分析し、潜在的な設備の故障を驚くほど正確に予測することができます

FHIRを使ってデータとAI活用を加速しましょう!

October 25, 2024 アーロン・ザヴォラアドナン・ジャベル による投稿 in
DatabricksとXponentLのパートナーシップが、顧客が自分たちのFHIRニーズを解放することをどのように可能にしているかを発見してください。 dbignite についてもっと学びましょう。 あなたが体調を崩していると想像してみてください。患者として、あなたは最小限の摩擦であなたの病気を対処したいと思っているので、あなたはすぐに完全な健康に戻ることができます。 あなたが選択する医療施設(緊急治療、一般診療医のオフィス、病院)や、あなたが診察を受ける医療提供者に関係なく、ケアチームがあなたの全体的な患者旅行データにアクセスする能力は、効率的かつ効果的な治療を確保するためにこれまで以上に重要となっています。 ヘルスケアは膨大な量のデータを保有しています。実際、ヘルスケア業界は、 世界のデータの30% を生成すると言われています。プロバイダーとの各エンカウンターは、あなたの健康ストーリーのパン粉を生成します。プロバイダーがこのデータをキャプチャするために使用するシステムの数を考えると、あなたの包括的な健康スト