レイクハウス上で「コンポーザブルCDP」を構築するには
翻訳:Saki Kitaoka. - Original Blog Link 顧客データは、あらゆる業界の最新組織にとって生命線です。組織がデータレイクハウスでデータチームとプラクティスをレベルアップするにつれて、レイクハウスをアナリティクスのソース・オブ・トゥルースとしてだけでなく、マーケティング、オペレーション、パーソナライゼーションなどの原動力となるエンジンとして使用するケースが増えています。 Databricks Ventures は、Data Lakehouse ネイティブのカスタマーデータプラットフォーム ( CDP ) を強化するため、Hightouch に投資しました( invested )。Hightouchは、DatabricksユーザーがLakehouseから直接顧客データを収集、保存、モデル化、活性化するために必要なすべての機能を提供します。このLakehouse中心のアーキテクチャは、独自のデータインフラストラクチャを中心とした完全な コンポーザブルCDP を作成します。このブログでは、L
画像とメタデータの活用して商品の名寄せを実現するには
翻訳:Saki Kitaoka. - Original Blog Link 商品マッチングは、多くの小売企業や消費財メーカーにとって不可欠な機能です。サプライヤーがオンライン・マーケットプレイスで新商品を販売する際、入荷する商品は既存の商品カタログの商品と比較されます。サプライヤーは、小売業者のウェブサイトに掲載されている商品リストを比較し、表示されている内容が契約条件と一致していることを確認します。小売業者はお互いのウェブサイトをスクレイピングし、価格比較のために商品を一致させることがあります。また、サプライヤーは、小売業者やサードパーティのデータから、より上位の商品アグリゲートと、販売する個々のSKUを照合する必要があります。多くの組織にとって、この作業は時間がかかり、正確ではありません。 この作業を行う上での主な課題は、同じ商品でも組織によってラベル表示が異なることです。表示される商品名、説明文、または顧客と商品との結びつきをよくするための箇条書きの特徴リストの小さな差異が、正確な一致を不可能にすることがあ
RFMセグメンテーションとコンポーザブルCDPによる小売パーソナライゼーション
Check out our Solution Accelerator for RFM Segmentation for more details and to download the notebooks . 翻訳:Junichi Maruyama. - Original Blog Link...
大規模言語モデル(LLM)を用いた商品レビューの自動分析
Check out our LLM Solution Accelerators for Retail for more details and to download the notebooks. 翻訳:Junichi Maruyama. - Original Blog Link 会話AIはここ数カ月で多くのメディアの注目を集めたが、大規模言語モデル(LLM)の能力は会話のやり取りをはるかに超えている。クエリ応答、要約、分類、検索など、あまり目立たない機能にこそ、多くの組織が労働力を強化し、顧客体験をレベルアップするための直接的な機会を見出している。...
因果機械学習による販促オファーの最適化
翻訳:Junichi Maruyama. - Original Blog Link 多くの企業は、取引を成立させたり、契約を更新させたり、サービスを購入させたりするために、顧客にプロモーションのオファーを提供している。このようなインセンティブは、販売者にとっては、購入と引き換えに顧客に提供される収益やサービスの面でコストがかかる。しかし、適切に適用されれば、取引を確実に成立させ、購入規模を拡大させることもできる。しかし、インセンティブオファーを受け取ったすべてのアカウントが同じように反応するわけではありません。不適切に適用された販促オファーは、取引の規模や速度に何の影響も与えないかもしれないし、不必要にマージンを損なうかもしれない。顧客にインセンティブを提案する組織は、オファーが取引完了の確率に与える影響を予測し、それが取引の純収益に与える影響を理解することが重要である。 プロモーション・オファーを最適化することで、より良い結果を導くことができる あるソフトウェア会社が、営業チームが異なる提案に対してどのようにオ
複雑な傾向スコアリング・シナリオをDatabricksで管理する
詳細とノートブックのダウンロードについては、 Solution Accelerator for Propensity Scoring をご覧ください。 翻訳:Junichi Maruyama. - Original Blog Link 消費者は、パーソナライズされた方法でのエンゲージメントをますます期待するようになっている。最近の購入を補完する製品を宣伝する電子メール メッセージであれ、よく閲覧するカテゴリの製品のセールを告知するオンライン バナー広告であれ、または表明された (または暗示された) 興味に沿った動画や記事であれ、消費者は個人のニーズや価値観を認識するメッセージングを好むことを実証しています。 ターゲットを絞ったコンテンツでこのような嗜好に応えることができる組織は、消費者とのエンゲージメントからより高い収益を生み出す 機会 がある一方、そうでない組織は、ますます混雑し、分析が高度化する小売業界において顧客離れのリスクを負うことになる。その結果、多くの企業は、他の分野への支出を減速させている経済の不確
Databricks Marketplace for Retailersで数ヶ月から数時間へ
翻訳:Junichi Maruyama. - Original Blog Link 例えば、ある流通業者が、コンビニエンスストアの顧客から炭酸飲料が売れている要因を把握したいと考えたとしよう。従来であれば、コンビニエンスストアの顧客に接触してPOSデータを入手し、追加のパートナーと協力して天候データを取得し、自社の出荷やプロモーション・データとの統合を開発する必要があった。この単純な分析を可能にするには、データエンジニアリングに数週間を要する。 Databricks Marketplaceの発表により、このような分析が数時間でできるようになりました。企業は今、次のことができる: 消費に関する優れた指標である PredictHQ の local event data でソースをリッチ化することで、洞察を得るまでの時間を短縮します アキュウェザー(Accuweather)の履歴および予測気象データ をシームレスに統合して、傾向をよりよく理解し、顧客体験を調整する 40以上の小売業者のPOSソース にアクセスし、在庫と
レイクハウスで顧客生涯価値を見積もる
翻訳:Junichi Maruyama. - Original Blog Link スニル・グプタ博士は『 Driving Digital Strategy 』の中で、「20%の顧客が利益の200%を占めている」と指摘している。この数字が意味するところは、一部の顧客は、その顧客から得られる利益よりも、それ以上にコストがかかっているということである。正確な比率はビジネスによって異なるかもしれないが、小売企業や消費財企業は、価値の高い顧客を特定し、その顧客と長期的な関係を築き、そのような顧客を増やす一方で、リターンが見込めない顧客への投資を抑えることが極めて重要である。 課題は、特定の顧客の潜在的な収益性が常にわかっているわけではないということである。非サブスクリプション・モデルでは、顧客の出入りは自由であるため、ある瞬間にはハイパフォーマンスな顧客としての可能性を示し、次の瞬間には姿を消して二度と戻ってこないかもしれない。しかし、全体として見れば、顧客の取引に関連する頻度、頻度、金額(消費額)には比較的予測可能なパ
リテールメディアネットワークの力を引き出す: データ駆動型広告がリテールプロモーションの展望を変える方法
Unlocking the Power of Retail Media Networks: How Data-Driven Advertising is Changing the Retail Promotions Landscape 翻訳: junichi.maruyama 薄利多売と顧客獲得競争の激化により、小売業者は常に新しい収益化の方法を模索し、時代の先端を走っています。CPG企業がより柔軟で消費者をターゲットにすることを求める中、従来はトレードプロモーションに費やされていたマーケティング予算は、FacebookやGoogleなどのデジタル広告に一部移行しています。 このような販促費のシフトは、小売業者の犠牲の上に成り立っています。米国では、FacebookとGoogleがデジタル広告費全体の 50% 近くを占めています。しかし、アマゾンは2012年に独自のリテール・メディア・ネットワーク(RMN)を設立してこれに挑戦し、販促費を小売業のエコシステムに戻しました。このように、新しいテクノロジーとデータアク
大規模言語モデル(LLM)による商品検索の強化
Original Blog : Enhancing Product Search with Large Language Models (LLMs) 翻訳: junichi.maruyama ChatGPTやDollyなどのテキスト生成能力は実に素晴らしく、AIの分野での大きな一歩として当然のように認識されています。しかし、これらのモデルによってもたらされる未来への興奮が落ち着くにつれて、多くの組織が、これらのテクノロジーを今日どのように活用できるのか、という疑問を持ち始めています。 多くの新技術と同様、大規模言語モデル(LLM)の完全な応用範囲は現時点では不明ですが、 以前のブログ で紹介したように、私たちが現在行っていることを補強し強化するために使用できるいくつかの領域を特定することができます。大量の文章を要約し、十分な情報を得た上で意見を述べたり、指導したりするような場は、まさにうってつけです。 製品カタログの検索にお困りのお客様へ 小売業や消費財メーカーにとって、コスト削減だけでなく、成長促進にもつながる