Advanced Machine Learning Operations
In this course, you will be provided with a comprehensive understanding of the machine learning lifecycle and MLOps, emphasizing best practices for data and model management, testing, and scalable architectures. It covers key MLOps components, including CI/CD, pipeline management, and environment separation, while showcasing Databricks’ tools for automation and infrastructure management, such as Databricks Asset Bundles (DABs), Workflows, and Mosaic AI Model Serving. You will learn about monitoring, custom metrics, drift detection, model rollout strategies, A/B testing, and the principles of reliable MLOps systems, providing a holistic view of implementing and managing ML projects in Databricks.
Note: This course is the second in the series of Advanced Machine Learning.
The user should have intermediate-level knowledge of traditional machine learning concepts, development, and the use of Python and Git for ML projects.
It is recommended that the user has intermediate-level experience with Python.
Self-Paced
Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos
Registration options
Databricks has a delivery method for wherever you are on your learning journey
Self-Paced
Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos
Register nowInstructor-Led
Public and private courses taught by expert instructors across half-day to two-day courses
Register nowBlended Learning
Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase
Purchase nowSkills@Scale
Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details