Skip to main content

Data Modeling Strategies

This course offers a deep dive into designing data models within the Databricks Lakehouse environment, and understanding the data products lifecycle. Participants will learn to align business requirements with data organization and model design leveraging Delta Lake and Unity Catalog for defining data architectures, and techniques for data integration and sharing.

Note: The course includes practice labs that the learners should perform after going through the entire course. 

Skill Level
Associate
Duration
3h
Prerequisites
    • Foundational knowledge equivalent to Databricks Certified Data Engineer Associate and familiarity with many topics covered in Databricks Certified Data Engineer Professional.
    • Experience with:

   - Basic SQL queries and table creation on Databricks

   - Lakehouse architecture fundamentals (medallion layers)

   - Unity Catalog concepts (high-level)

    • [Optional] Familiarity with data warehousing concepts (dimensional modeling, 3NF, etc.) is beneficial but not mandatory.

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

Register now

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

Register now

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Data Engineer

Automated Deployment with Databricks Asset Bundles

This course provides a comprehensive review of DevOps principles and their application to Databricks projects. It begins with an overview of core DevOps, DataOps, continuous integration (CI), continuous deployment (CD), and testing, and explores how these principles can be applied to data engineering pipelines.

The course then focuses on continuous deployment within the CI/CD process, examining tools like the Databricks REST API, SDK, and CLI for project deployment. You will learn about Databricks Asset Bundles (DABs) and how they fit into the CI/CD process. You’ll dive into their key components, folder structure, and how they streamline deployment across various target environments in Databricks. You will also learn how to add variables, modify, validate, deploy, and execute Databricks Asset Bundles for multiple environments with different configurations using the Databricks CLI.

Finally, the course introduces Visual Studio Code as an Interactive Development Environment (IDE) for building, testing, and deploying Databricks Asset Bundles locally, optimizing your development process. The course concludes with an introduction to automating deployment pipelines using GitHub Actions to enhance the CI/CD workflow with Databricks Asset Bundles.

By the end of this course, you will be equipped to automate Databricks project deployments with Databricks Asset Bundles, improving efficiency through DevOps practices.

Note: This course is the fourth in the 'Advanced Data Engineering with Databricks' series.

Paid & Subscription
3h
Lab
Professional

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.