Skip to main content

Machine Learning at Scale

In this course, you will gain theoretical and practical knowledge of Apache Spark’s architecture and its application to machine learning workloads within Databricks. You will learn when to use Spark for data preparation, model training, and deployment, while also gaining hands-on experience with Spark ML and pandas APIs on Spark. This course will introduce you to advanced concepts like hyperparameter tuning and scaling Optuna with Spark. This course will use features and concepts introduced in the associate course, such as MLflow and Unity Catalog, for comprehensive model packaging and governance.


Note: This course is the first in the series of Advanced Machine Learning. 

Skill Level
Professional
Duration
2h
Prerequisites

The content was developed for participants with these skills/knowledge/abilities:  

  • A beginner-level understanding of Python.

  • Basic understanding of DS/ML concepts (e.g. classification and regression models), common model metrics (e.g. F1-score), and Python libraries (e.g. scikit-learn and XGBoost). 

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

Register now

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

Register now

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Data Engineer

Automated Deployment with Databricks Asset Bundles

This course provides a comprehensive review of DevOps principles and their application to Databricks projects. It begins with an overview of core DevOps, DataOps, continuous integration (CI), continuous deployment (CD), and testing, and explores how these principles can be applied to data engineering pipelines.

The course then focuses on continuous deployment within the CI/CD process, examining tools like the Databricks REST API, SDK, and CLI for project deployment. You will learn about Databricks Asset Bundles (DABs) and how they fit into the CI/CD process. You’ll dive into their key components, folder structure, and how they streamline deployment across various target environments in Databricks. You will also learn how to add variables, modify, validate, deploy, and execute Databricks Asset Bundles for multiple environments with different configurations using the Databricks CLI.

Finally, the course introduces Visual Studio Code as an Interactive Development Environment (IDE) for building, testing, and deploying Databricks Asset Bundles locally, optimizing your development process. The course concludes with an introduction to automating deployment pipelines using GitHub Actions to enhance the CI/CD workflow with Databricks Asset Bundles.

By the end of this course, you will be equipped to automate Databricks project deployments with Databricks Asset Bundles, improving efficiency through DevOps practices.

Free
2h
Professional

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.