ML Virtual Event
We are thrilled to announce the general availability of Databricks Model Serving. Model Serving deploys machine learning models as a REST API, allowing you to build real-time ML applications like personalized recommendations, customer service chatbots, fraud detection, and more - all without the hassle of managing serving infrastructure.
With the launch of Databricks Model Serving, you can now deploy your models alongside your existing data and training infrastructure, simplifying the ML lifecycle and reducing operational costs.
"By doing model serving on the same platform where our data lives and where we train models, we have been able to accelerate deployments and reduce maintenance, ultimately helping us deliver for our customers and drive more enjoyable and sustainable living around the world." - Daniel Edsgärd, Head of Data Science at Electrolux
Real-time machine learning systems are revolutionizing how businesses operate by providing the ability to make immediate predictions or actions based on incoming data. Applications such as chatbots, fraud detection, and personalization systems rely on real-time systems to provide instant and accurate responses, improving customer experiences, increasing revenue, and reducing risk.
However, implementing such systems remains a challenge for businesses. Real-time ML systems need fast and scalable serving infrastructure that requires expert knowledge to build and maintain. The infrastructure must not only support serving but also include feature lookups, monitoring, automated deployment, and model retraining. This often results in teams integrating disparate tools, which increases operational complexity and creates maintenance overhead. Businesses often end up spending more time and resources on infrastructure maintenance instead of integrating ML into their processes.
Databricks Model Serving is the first serverless real-time serving solution developed on a unified data and AI platform. This unique serving solution accelerates data science teams' path to production by simplifying deployments and reducing mistakes through integrated tools.
Databricks Model Serving brings a highly available, low-latency and serverless service for deploying models behind an API. You no longer have to deal with the hassle and burden of managing a scalable infrastructure. Our fully managed service takes care of all the heavy lifting for you, eliminating the need to manage instances, maintain version compatibility, and patch versions. Endpoints automatically scale up or down to meet demand changes, saving infrastructure costs while optimizing latency performance.
"The fast autoscaling keeps costs low while still allowing us to scale as traffic demand increases. Our team is now spending more time building models solving customer problems rather than debugging infrastructure-related issues." - Gyuhyeon Sim, CEO at Letsur.ai
Databricks Model Serving accelerates deployments of ML models by providing native integrations with various services. You can now manage the entire ML process, from data ingestion and training to deployment and monitoring, all on a single platform, creating a consistent view across the ML lifecycle that minimizes errors and speeds up debugging. Model Serving integrates with various Lakehouse services, including
"By doing model serving on a unified data and AI platform, we have been able to simplify the ML lifecycle and reduce maintenance overhead. This is enabling us to redirect our efforts towards expanding the use of AI across more of our business." - Vincent Koc, Head of Data at hipages group
Databricks Model Serving simplifies the model deployment workflow, empowering Data Scientists to deploy models without the need for complex infrastructure knowledge or experience. As part of the launch, we are also introducing serving endpoints, which uncouple the model registry and scoring URI, resulting in more efficient, stable, and flexible deployments. For example, you can now deploy multiple models behind a single endpoint and distribute traffic as desired among the models. The new serving UI and APIs make it easy to create and manage endpoints. Endpoints also provide built-in metrics and logs that you can use to monitor and receive alerts.