メインコンテンツへジャンプ
<
ページ 2
>

AIを活用した金融サービスにおけるデータガバナンスのシンプル化

データが急速に増加し、金融機関がAIや生成AIモデルにデータを活用することへの圧力が高まる中、データガバナンスの重要性はますます高まっています。 欧州連合(EU)議会が包括的なAI規制を可決し、米国連邦政府がAI利用を規制する措置を講じるなど、規制当局がAIの応用に関心を寄せています。 これは、AI規制の重要性の高まりを浮き彫りにしています。(詳しくは、Databricksのブログ「 展開中のAI規制への対応をデータインテリジェンスプラットフォームが支援 」にまとめられています) データガバナンスは基礎であり、生成AIの使用に先立つものです。 データガバナンスがなければ、金融機関は規制上の要求を満たすことも、AIの結果を説明することも、アルゴリズムやデータ中心のバイアスを制御することもできません。 AIモデルがより複雑になるにつれ、それらをどのように管理し、社内外のデータ資産とどのように相互作用させるかを検討することが極めて重要になります。 データガバナンスは生成AIよりも前に考えるべき重要な基盤 データとテクノ

KXとDatabricksの統合:資本市場などにおける時系列データ分析の進歩

KXとDatabricksは、資本市場分野向けの時系列分析ソリューションの開発で提携し、クオンツ調査や一時的な取引データ分析など、多くのユースケースをサポートしています。 これまで、SQL、Python、Rなどのデータサイエンスや分析のプログラミング言語では、時系列分析が煩雑で時間がかかっていました。 SQLはその人気と強力なクエリ言語にもかかわらず、時系列データの順序(例えば、時間ベースの結合)や以前の状態に関する質問には限界があります。 PythonやR、そしてSparkでさえ、時間分析を実行するには何ページものコードが必要です。 これらの限界は、時系列分析に伴う高次元データの課題によってさらに複雑になっています。 特にヘッジファンドや機関投資家にとって、このコラボレーションは、KXの専門的な時系列データ処理能力と、Databricksで利用可能な包括的な計算および機械学習フレームワークを組み合わせたものです。 このパートナーシップは、時系列データに焦点を当てることで、金融業界向けの定量的・データサイエンス研

Coastal Community Bank、Databricksのデータインテリジェンスプラットフォームを用いて充実した金融エコシステムを構築

March 4, 2024 Giselle Goicocheaアンナ・キュイジア による投稿 in
Coastal Community Bank(Coastal)のSVP、Head of Technology Operations and ImplementationのBarb MacLean氏とCavallo TechnologiesのRob Cavallo社長に感謝します。 ゴリアテのコミュニティ・バンクとして繁栄 ある意味で、コミュニティ・バンクであることがこれほど厳しくなったことはありません。 米国では現在、上位15行が業界の預金と資産の大半を支配しており、大手5行で 総資産の56 % を管理しています。 さらに、中小銀行に対する規制上の要求も高まっており、大手の競争相手と同じような厳しい資本、報告、マネーロンダリング防止基準に従うことが求められています。 Coastal Community Bank(Coastal)のSVP、テクノロジー・オペレーションおよびインプリメンテーションの責任者であるBarb MacLean氏にとって、その解決策はサービスとしての銀行(BaaS)です。 CoastalがDe

M Scienceはオルタナティブデータを実用的な洞察に変える

機関投資家が利用できるデータセットは何千とあり、それぞれのデータセットが投資の意思決定において重要な洞察を解き明かすと期待されています。 何千ものデータセットと、それらの多くの潜在的なアプリケーション全体にわたって、多くの異なるスキーマ、バイアス、長所、欠点があります。 これらのデータセットを選択し、テストし、プロダクション化することは重要な仕事です。 最終的に投資家が求めているのは、データそのものではなく、データから得られる洞察です。 M Science社の使命は、オルタナティブ(代替)データに基づき、投資家の皆様に実用的な洞察を提供することです。 利用可能なデータを検討し、多くのデータをテストして有効性を判断し、企業のKPIを最も予測できるものを選択します。 このように厳選されたオルタナティブデータを使用し、書面調査、ダッシュボード、データフィードを通じてデータやデータ由来の製品を提供しています。 私たちは20年以上前、純粋にデータ駆動型の最初のリサーチプロバイダーとして、この使命を開始しました。 2000年

保険業界におけるDatabricks:Guidewire Marketplaceに掲載されました

DatabricksがGuidewire Marketplaceに掲載されたことを記念して、保険業界GTMディレクターのマルセラ・グラナドスとアライアンス担当シニアディレクターのジャスティン・フェントンが、『DatabricksがGuidewire Marketplaceに掲載されたことがなぜ保険会社にとって重要であるか』について対談しました。 ジャスティン: まずマルセラさんから、保険業界におけるDatabricksの現状について教えてください。導入状況はいかがですか?保険会社の顧客はDatabricksについてどのように考えていますか? マルセラ: もちろんです、ジャスティン!このようなお話をいただき、感激しています。2022年、私たちは保険のお客様の間でDatabricksの活用が大きく進化していることを目の当たりにしました。従来、DatabricksはETLエンジンとみなされ、その処理能力と計算上の優位性が評価されていました。しかし、Databricks製品の進化により、保険会社はエンドツーエンドのデータ

DatabricksとMongoDBで保険のAI主導型イノベーションを加速する

November 8, 2023 マルセラ・グラナドスジェフ・ニーダム による投稿 in
保険会社は近代化において大きな変化を遂げている。 伝統的にレガシーシステムの使用で知られる大手通信事業者は、収益性の高い成長を維持することを目標に、クラウドへの移行やAIなどの新技術の採用によってインフラを近代化している。 イノベーションで価値を生み出してきた企業に共通する先進的な手法は、新しいデジタル製品を迅速に市場に投入し、手作業のプロセスを自動化し、どこにいても顧客やそのデータとつながることができることだ。 これが当てはまる主な分野は以下の通りだ: コネクテッド・インシュアランス& モビリティ IoTとテレマティクスの台頭は、保険会社が商品の内容やビジネスのやり方を変えつつあることを意味する。 大手企業(プログレッシブ社)がテレマティクス製品を最初に発売した競争上の優位性について考えてみよう。 より正確な価格設定が可能になり、その結果、より良い保険料につながるのであれば、データを共有することを厭わない顧客層を開拓できるという利点がある。 意思決定支援& 自動化 意思決定サポートと自動化された

Databricks Lakehouseでクレジットデータプラットフォームを構築する方法

July 4, 2023 Nuwan GanganathBoris BanushevRicardo Portilla による投稿 in
翻訳:Junichi Maruyama. - Original Blog Link dbdemos.aiのデモ をご覧になり、ビジネスのためのクレジットデータプラットフォームを構築してください。 はじめに 世界銀行の金融包摂に関する報告 によると、なんと17億人もの成人が銀行口座を持たないとされている。銀行口座を持たない個人の多くは、伝統的な金融機関から融資を受けることが難しく、法外な金利で融資を行うインフォーマルな金融業者に頼ることになる。このグループには通常、若い世代、発展途上国の低所得者、農村部の住民が含まれ、その多くは金融サービスへのアクセスを得るために移動している。 銀行口座を持たない人々に関して言えば、モバイル・バンキングは通常、伝統的な銀行業務が弱いと思われている地域の消費者ニーズを満たすために参入してきました。世界中のスマートフォンのユーザー数は、過去5年間一貫して毎年最低5%ずつ増加しており、融資にとって新たな有望な機会をもたらしています。金融機関は、機械学習やその他の高度な分析を活用して顧客の

Generative AI is Everything Everywhere, All at Once

Original: Generative AI is Everything Everywhere, All at Once 翻訳: saki.kitaoka Data and AI Summit on "Generation AI "に直接またはバーチャルで参加し、詳細をご確認ください。 変化の激しい金融の世界では、企業は自動化の促進、製品イノベーションの加速、業務効率の改善を通じて競争力を維持する方法を常に模索しています。金融サービス機関(FSI)の自動化、合理化、効率化を支援する上で、Generative AIが重要な役割を果たすとエグゼクティブは考えています。FSIは、膨大な量のデータを分析し、人間の知性を補強する洞察を提供するために、AI機能への投資を開始しています。例えば、ブルームバーグは最近、金融業界向けに特別に構築された500億パラメータの大規模言語モデル(LLM)「 Bloomberg-GPT 」を発表し、JPモルガンはChat-GPTベースの言語AIモデルを使用して、...

サイバーセキュリティアプリケーション向けDatabricks Lakehouseプラットフォーム

翻訳: Masahiko Kitamura 具体的なコードはIOCマッチングのソリューションアクセラレータの GitHub reo を参照ください。また、本ソリューションのPOC・トライアルについては [email protected] までご連絡ください。 金融機関、医療機関、政府機関がデータをクラウドに移行し、IoTセンサーや相互接続されたデバイスが増加しているため、サイバーセキュリティは依然として重要なデータ課題となっています。地政学的な脅威が続く中、企業は、大量のデータの処理、複雑なデータ処理タスク(人工知能や機械学習などの高度な分析機能を含む)のサポート、費用対効果の高い拡張が可能なDatabricks Lakehouseプラットフォームをサイバー業務に採用しています。Databricks Lakehouseプラットフォームは、データ、アナリティクス、AIを単一のプラットフォームで統合した、サイバーセキュリティ業界の隠れた標準基盤になっています。 企業やサイバーセキュリティベンダー

企業のAI化を真の意味で加速する「モデルリスクマネジメント」

EYのMario Schlener、Wissem Bouraoui、Tarek Elguebalyには、このジャーニーを通してのサポート、このブログとソリューションアクセラレータへの貢献に対して特別な感謝を申し上げます。 Original: Model Risk Management, a true accelerator to corporate AI 翻訳: junichi.maruyama モデルリスク管理(MRM) - 金融サービス業界の多くのモデル開発者やデータサイエンティストにこれほどの不安をもたらす3文字の頭字語は稀である。MRMは、ガバナンスとコンプライアンスチームが、誤ったモデルや誤用されたモデルによって引き起こされる悪影響を慎重に特定し、軽減するための規律である。人工知能(AI)や機械学習(ML)モデルに限らず、AI/MLモデルは銀行で管理されているモデルのごく一部であり、その範囲はエンドユーザーのコンピューティングアプリケーション、複雑な統計パッケージ、ルールベースのプロセスにも容易に及ぶ。