メインコンテンツへジャンプ
<
ページ 19
>

Delta Live Tablesを用いたサイバーセキュリティのレイクハウス向けETLパイプラインの構築

June 8, 2023 Silvio Fiorito による投稿 in
翻訳: Masahiko Kitamura オリジナル記事: Building ETL pipelines for the cybersecurity lakehouse with Delta Live Tables Databricksはこのほど、データエンジニア、データサイエンティスト、アナリストが、複雑なインフラを管理することなく、あらゆるクラウド上で信頼性の高いデータ、分析、MLワークフローを構築できるようにする Workflows を発表しました。Workflowsでは、 Delta Live Tables を使用して、インジェストやリネージを含む自動管理されたETLパイプラインを構築することができます。ワークフローとDelta Live...

CrowdStrike Falconのイベントに向けてサイバーセキュリティのレイクハウスの構築

翻訳: Masahiko Kitamura オリジナル記事: Building a Cybersecurity Lakehouse for CrowdStrike Falcon Events 今すぐDatabricksを導入して、 こちらのノートブック を実行してみてください。 エンドポイントデータは、セキュリティチームが脅威の検出、脅威の狩猟、インシデント調査、およびコンプライアンス要件を満たすために必要です。データ量は、1日あたりテラバイト、1年あたりペタバイトになることもあります。ほとんどの組織がエンドポイントログの収集、保存、分析に苦労しているのは、このような大容量のデータに関連するコストと複雑さのためです。しかし、こうである必要はありません。 この2部構成のブログシリーズでは、Databricksを使用してペタバイトのエンドポイントデータを運用し、高度な分析によってセキュリティ体制を向上させる方法を、コスト効率の良い方法でご紹介します。第1部(このブログ)では、データ収集のアーキテクチャとSIEM(Sp

Delta Live Table(DLT)を用いたGDPR・CCPAにおける「忘れられる権利」の取り扱いについて

June 1, 2023 Marcin Wojtyczka による投稿 in
Original: Handling "Right to be Forgotten" in GDPR and CCPA using Delta Live Tables (DLT) 翻訳: junichi.maruyama ここ数十年でデータ量は爆発的に増加し、各国政府は個人データに対する個人の保護と権利を強化するための規制を設けています。 General Data Protection Regulation (GDPR)と...

ファイルアップロードとデータ追加UIでLakehouseに簡単に取り込む

Original: Easy Ingestion to Lakehouse with File Upload and Add Data UI 翻訳: junichi.maruyama Lakehouseへのデータ取り込みは、多くの組織にとってボトルネックとなり得ますが、Databricksを使用すれば、様々なタイプのデータを迅速かつ容易に取り込むことができます。小さなローカルファイルでも、データベース、データウェアハウス、メインフレームなどの大規模なオンプレミスストレージプラットフォームでも、リアルタイムストリーミングデータでも、その他のバルクデータ資産でも、DatabricksはAuto Loader、COPY INTO、Apache Spark™ API、設定可能なコネクタなどの幅広い取り込みオプションであなたをサポートします。また、ノーコードまたはローコードアプローチをご希望の場合は、Databricksはインジェストを簡素化する使いやすいインターフェイスを提供します。 データインジェストブログシリーズの第

一部の地域でDatabricks SQL Serverlessの一般利用開始を発表します!

Original: Announcing the General Availability of Databricks SQL Serverless ! 翻訳: saki.kitaoka 本日、AWSおよびAzureの一部地域でDatabricks SQLのサーバーレスコンピューティングが一般利用可能になったことを発表することを大変嬉しく思います! Databricks SQL (DB SQL) サーバーレスは、インスタントでエラスティックなコンピューティングによる最高のパフォーマンスを提供し、コストを削減し、インフラの管理ではなくビジネスへの最大の価値提供に注力できるようにします。GA(一般提供)により、Databricksからの最高レベルの安定性、サポート、エンタープライズ対応を、Databricks Lakehouse Platform上のミッションクリティカルなワークロードに対して期待することができます。 このブログ記事では、DB SQL...

Databricksがファイルサイズの自動最適化によりクエリパフォーマンスを最大2.2倍向上させた方法

Original : How Databricks improved query performance by up to 2.2x by automatically optimizing file sizes 翻訳:saki.kitaoka テーブルファイルサイズの最適化は、長い間データエンジニアにとって必要だが複雑なタスクでした。テーブルの適切なファイルサイズに到達すると、大幅なパフォーマンス向上が実現しますが、これは伝統的に深い専門知識と大量の時間投資を必要としていました。 最近、Databricks SQLのためのPredictive I/O( Predictive I/O...

Databricks Notebooks向けの新しいデバッグ機能:Variable Explorer

Original: New debugging features for Databricks Notebooks with Variable Explorer 翻訳: saki.kitaoka 今日、Databricks NotebookのPython向けにVariable Explorer(変数エクスプローラ)の一般利用可能を発表することを非常に嬉しく思います。Variable Explorerを使用すると、Databricksのユーザーはノートブック内で定義されたすべての変数を一目で確認したり、ワンクリックでDataFramesを調査・探索したり、pdbを用いてPythonコードをインタラクティブにデバッグすることが可能になります。 ノートブックの変数を確認する Variable Explorerは、ノートブックセッションで利用可能なすべての変数を表示します。すべてのシンプルな変数タイプについて、名前、タイプ、値が表示されます。 Variable Explorerは、SparkとPandasのDataFra

CARTOとDatabricksによるフリート最適化

Original : Fleet optimization with CARTO & Databricks 翻訳: junichi.maruyama 近年、効率的な配送は企業にとってますます重要になってきており、特に物流企業や独自の流通網を持つ消費財(CPG)業界の企業にとって重要な課題となっています。 これらの企業にとって大きな課題は、輸送ルートを最適化し、コストを最小化しながらタイムリーな配送を実現することです。そのためには、距離、交通量、道路状況、使用する輸送手段の種類(トラック、鉄道、航空など)などの要素を考慮する必要があります。さらに、CPGやロジスティクス企業は、輸送手段の選択による環境への影響を考慮し、カーボンフットプリントの削減を目指さなければなりません。燃料価格の上昇と競争の激化により、これらの企業にとって、より持続可能性を高め、輸送の問題に対処し、全体的な配送コストを削減するための明確な計画を策定することが極めて重要となっています。 ルーティングソフトは、企業がこれらの課題に取り組む上

Databricks Fleet Clusters for AWSのご紹介

Original : Introducing Databricks Fleet Clusters for AWS 翻訳: junichi.maruyama この度、Databricks FleetクラスタのAWSでの一般提供開始を発表します。 フリートクラスタとは? Databricks Fleet Clusters は、Databricksがインテリジェントに最適化し、プロセスを自動化することで、手動でインスタンスを選択する手間をかけずにSpot価格の潜在能力を引き出します。Databricksの1クラスタ内の複数のインスタンスにまたがるフレックス機能により、可用性を確保しながら、AWS Spotインスタンスを可能な限り低コストで利用することが可能です。クラウドインフラの複雑な管理を回避し、本当に重要なこと、つまりデータドリブンなインサイトに時間を費やすことができます。 Databricksのフリートクラスタは、AWSのお客様向けに新しいフリートインスタンスファミリーのセットを導入します:m-fleet、md-