メインコンテンツへジャンプ
<
ページ 2
>

DatabricksにAIモデルの共有機能が新登場!

本日、 Databricks Delta Sharingと Databricks Marketplaceの 両方でAIモデルの共有が可能になったことを発表できることを嬉しく思います。 Delta Sharingを使用すると、クラウド、プラットフォーム、地域を越えて、組織内または外部でAIモデルを安全に共有し、提供することができます。 さらに、Databricks Marketplaceは、 John Snow Labsから 医療専門家をサポートするための60の新しい業界別AIモデルをリリースしました。 AIモデルの共有はパブリックプレビューで、Delta Sharingとマーケットプレイスで利用可能です。 Databricks Data Intelligence Platformは、モデル提供、AIトレーニング、モデル監視を含むエンドツーエンドの機械学習機能により、モデルの検索と共有を行う新しい機能をサポートします。 ジェネレーティブAIで高まるシェアリング需要に対応 ここ数カ月、DatabricksはDatab

データエンジニアリングとストリーミングの最新動向 - 2024年1月

Databricksは このほど 、当社が開拓したレイクハウス・アーキテクチャの自然な進化形であるデータ・インテリジェンス・プラットフォームを発表しました。 データ・インテリジェンス・プラットフォームとは、組織固有のデータを深く理解し、誰でも簡単に必要なデータにアクセスし、ターンキー方式のカスタムAIアプリケーションを迅速に構築できるようにする、単一の統合プラットフォームという考え方です。 データインテリジェンスプラットフォーム上に構築されたすべてのダッシュボード、アプリ、およびモデルが適切に機能するには信頼できるデータが必要であり、信頼できるデータには最高のデータエンジニアリングプラクティスが必要です。 Databricksは 、 Spark 、 Delta Lake 、 ワークフロー 、 Delta Live Tables 、そして Databricks Assistantの ような新しいAI機能を通じて、データエンジニアにベストプラクティスを提供してきました。 AIの時代には、 データエンジニアリングのベス

Databricks アシスタントを最大限に活用するための5つのヒント

Databricks アシスタントは、Databricksノートブック、SQLエディタ、ファイルエディタで利用可能な、コンテキストを意識したAIアシスタントで、Databricksの生産性を向上させます: SQL/Pythonコードの生成 オートコンプリートコードまたはクエリ コードの変換と最適化 コードやクエリの説明 エラーの修正とコードのデバッグ アクセス可能なテーブルとデータの発見 Databricks アシスタントのドキュメント には、これらのタスクに関する高レベルの情報と詳細が記載されていますが、コード生成のためのジェネレーティブAIは比較的新しいものであり、これらのアプリケーションを最大限に活用する方法はまだ学習中です。 このブログ記事では、Databricks アシスタントを最大限に活用するための5つのヒントとトリックについて説明します。 Databricks アシスタントのための5つのヒント 1. より良い応答を得るためにFind Tablesアクションを使用する Databricks アシスタン

Delta Sharingによるグローバル・データ・コラボレーションの構築

今日の相互接続されたデジタル環境では、組織やプラットフォームを超えたデータ共有とコラボレーションが、現代のビジネス運営に不可欠です。 革新的なオープンデータ共有プロトコルであるDelta Sharingは、ベンダーやデータ形式の制約を受けることなく、セキュリティとスケーラビリティを優先し、組織が多様なプラットフォーム間でデータを安全に共有し、アクセスできるようにします。 このブログでは、特定のデータ共有シナリオに合わせたアーキテクチャガイダンスを検討することで、Delta Sharing内のデータレプリケーションオプションを紹介します。 多くのDelta Sharingのお客様との経験から得た洞察をもとに、具体的なデータレプリケーションの選択肢を提供することで、イグレスコストを削減し、パフォーマンスを向上させることを目標としています。 ライブ共有は多くの地域間データ共有シナリオに適していますが、データセット全体を複製し、各地域の複製用にデータ更新プロセスを確立した方がコスト効率が良い場合もあります。 Delta

Unity Catalogがもたらす価値は何か?

Reviewed by saki.kitaoka ガバナンスは、データとAI製品が正確なガイドラインと標準に従って一貫して開発され、維持されることを保証します。 アーキテクトのための設計図であり、一貫性、ガイドライン、標準によってソリューションとデータビジョンに命を吹き込みます。 反復可能なワークフロー管理により、データエンジニアのためのスケールとスピードを実現します。 データサイエンティストのためのAIモデルを共同で構築し、運用することで、スケールの大きな運用を可能にします。 データ資産を広く共有し、すべての人に利益をもたらすと同時に、必要なときには非公開にする、データ管理者のためのセキュリティです。 データとAI資産に基づくビジネス洞察の透明性を備えた、経営幹部にとっての信頼です。 また、 Databricks Unity Catalogを 使用することで、業務効率を高めることができます。 このブログでは、企業がユニファイド・ガバナンス・ソリューションを標準化する前に直面する多くの課題の概要を説明し、テクノロ

dbtとDatabricksを用いてコスパの良いリアルタイムデータ処理を行う

ビジネスが成長するにつれ、データ量はGBからTB(またはそれ以上)に拡大し、レイテンシー要求は数時間から数分(またはそれ以下)になり、ビジネスに新鮮な洞察を提供するためのコストはますます高くなります。これまでPythonやScalaのデータエンジニアは、このような需要に応えるためにストリーミングを利用し、新しいデータをリアルタイムで効率的に処理してきましたが、SQLベースのdbtパイプラインを拡張する必要があるアナリティクスエンジニアには、このような選択肢はありませんでした。 しかし今は違います!このブログでは、Databricks の新しいストリーミングテーブルとマテリアライズドビューを使用して、SQL と dbt のシンプルさで新鮮なリアルタイムのインサイトをビジネスに提供する方法を説明します。 背景 2023 Data + AI Summitでは、 Databricks SQLにストリーミングテーブルとマテリアライズドビューを導入 しました。この素晴らしい機能により、Databricks SQL ユーザーは

あらゆるユースケースに対応するストリーミング・アーキテクチャが必要な時が来た!

今日のデータ主導の世界では、企業はかつてない規模のデータを効率的に取り込み、処理するという課題に直面している。 常に生成されるビジネスクリティカルなデータの量と多様性により、アーキテクチャの可能性は無限に近い。 良いニュースは? これはまた、スループット、レイテンシー、コスト、運用効率など、データアーキテクチャをさらに最適化できる可能性が常にあることを意味する。 多くのデータ専門家は、"データストリーミング" や"ストリーミングアーキテクチャ" といった用語を、ほとんどのワークロードにとって複雑でコストがかかり、実用的でないように見える超低レイテンシのデータパイプラインと関連付けている。 しかし、Databricks Lakehouse Platform上でストリーミングデータアーキテクチャを採用したチームは、 ほとんどの場合 、スループットの向上、運用オーバーヘッドの削減、コストの大幅削減というメリットを得ることができます。 これらのユーザーの中には、サブ秒単位のレイテンシーでリアルタイムにジョブを実行する者も

レイクハウスAIがリアルタイム計算でモデルの精度を向上させる方法

機械学習モデルの予測品質は、モデルの訓練と使用に使用されるデータの品質に直接反映される。 通常、特徴量、つまりモデルへの入力データは事前に計算され、保存された後、推論のために検索され、モデルに提供される。 モデルの性能は、特徴計算に使用するデータの鮮度と直接相関することが多いため、これらの特徴を事前に計算できない場合に課題が生じる。 オンデマンド・フィーチャー・コンピュテーションを発表することで、このようなフィーチャー・クラスのサービスを簡素化することができる。 レコメンデーション、セキュリティシステム、不正検知などのユースケースでは、これらのモデルのスコアリング時にオンデマンドで機能を計算する必要がある。 シナリオは以下の通り: 特徴量の入力データがモデル提供時にしか得られない場合。 例えば、 distance_from_restaurantは 、モバイル機器によって決定されたユーザーの最後の既知の位置を必要とする。 ある機能の価値が、それが使われる文脈によって変化する状況。 デバイスの種類がデスク トップと

HiveテーブルをUnityカタログにアップグレードする方法

このブログでは、Hiveメタストア(HMS)*テーブルをUnityカタログ(UC)にシームレスにアップグレードする方法を、アップグレードするHMSテーブルのバリエーションに応じて異なる方法を使用して、例を挙げて説明します。 *注: Hiveメタストアは、デフォルト、外部メタストア、またはAWS Glue Data Catalogでもかまいません。 簡略化のため、本書では"Hive メタストア" という用語を使用します。 詳細を説明する前に、アップグレードの手順を説明しよう。 評価 - このステップでは、アップグレード対象として特定された既存の HMS テーブルを評価し、アップグレードの適切なアプローチを決定します。 このステップについては、このブログで説明します。 作成 - このステップでは、メタストア、カタログ、スキーマ、ストレージ資格情報、外部ロケーションなど、必要なUCアセットを作成します。 詳細については、ドキュメント( AWS 、 Azure...

Reposでコンフリクト解決をサポートしました: Merge, Rebase and Pull

October 11, 2023 Grant Eaton による投稿 in プラットフォームブログ
翻訳:Saki Kitaoka. - Original Blog Link Databricksでは、開発者の経験をシンプル化することに力を入れており、Databricks Reposにおける追加のGit機能を発表することを大変嬉しく思っています。ユーザーは現在、Repos UIから直接、Git merge(マージ)とGit rebase(リベース)を実行し、マージのコンフリクトを解決することができます。 新しい操作:マージ&リベース それぞれの操作は、あるブランチから別のブランチにコミット履歴を結合する方法で、違いはその達成戦略にあります。初心者の方には、まずマージを使用することをお勧めします。なぜなら、それはブランチへの強制プッシュを必要とせず、したがってコミット履歴を書き換えないからです。リベースはプロジェクトの履歴をクリーンに保ちますが、その履歴を書き換えることがあり、問題を引き起こす可能性があります。Databricksは、チームが最も適している方法を選ぶことを可能にします。戦略の違いについて詳しくは、