異常検知でエネルギーロスを未然に防ぐ
Original Blog : Anomaly Detection to Prevent Energy Loss 翻訳: junichi.maruyama 電力会社におけるエネルギー損失は、主に不正と漏電の2つに分類されます。不正(またはエネルギー窃盗)は悪意があり、メーターの改ざん、隣家への盗聴、さらには住宅地での商用負荷(栽培ハウスなど)の実行など、さまざまな可能性があります。メーターの改ざんは、従来は担当者が手作業でチェックしていましたが、最近のコンピュータビジョンの進歩により、ライダーやドローンを使ってチェックを自動化することができます。 エネルギー漏れは、通常、配管の破損など物理的な漏れを指すことが多いですが、より顕著な問題を含んでいることもあります。例えば、ヒートポンプ式の住宅では、冬に窓を開けっ放しにしておくと、異常なエネルギー消費を引き起こすことがあります。消費者をコスト上昇から守り、エネルギーを節約するためには、このような状況に対応する必要がありますが、人間優先のアプローチでは、エネルギー損失を
YipitDataがDatabricks Unity Catalogを活用しデータサービスの拡張を実現
This blog is authored by Anup Segu, Co-Head of Data Engineering at YipitData Original Blog : YipitData leverages Databricks Unity Catalog to Scale...
Databricks上のPyTorch - Spark PyTorch Distributor の紹介
Original Blog : PyTorch on Databricks - Introducing the Spark PyTorch Distributor 翻訳: junichi.maruyama 背景と動機 ディープラーニングのアルゴリズムは複雑で、トレーニングに時間がかかりますが、これらのアルゴリズムが実現する価値のために、研究室から生産現場へと急速に移行しつつあります。学習済みのモデルを使用して微調整する場合でも、ネットワークをゼロから構築する場合でも、学習時のメモリと計算負荷はすぐにボトルネックとなります。このような制約を克服するための手段として、一般的な最初の防御策は、分散学習を活用することです。Tensorflowには spark-tensorflow-distributor がありますが、PyTorchには同等のものがありませんでした。 Apache Sparkクラスタでの分散PyTorchトレーニングを簡素化するTorchDistributorライブラリをようやく発表することができました。
SAPと共にオープンデータエコシステムを開発する
Original Blog : Developing an Open Data Ecosystem with SAP 翻訳: junichi.maruyama 製造業、エネルギー、ライフサイエンス、小売業など、さまざまな業界で、企業がビジネスの耐久性、回復力、持続可能性を重視し、重要な意思決定にデータを活用するようになってきています。これらの業界の企業における重要なデータの大半は、SAPアプリケーションからもたらされています。 SAP Datasphere は、財務、サプライチェーン、CRM、人事など、ERPやその他の機能アプリケーション群にまたがるSAPデータへのシームレスかつスケーラブルなアクセスを可能にする包括的なデータサービスで、DatabricksはSAPの4つのローンチパートナーに加わったことを発表できることを嬉しく思っています。SAP Datasphereは、 ビジネスデータファブリックアーキテクチャ を実現し、ビジネスコンテキストやデータモデルビューをそのままにSAPデータを提供し、SAPデータの
エグゼクティブのためのデータ、アナリティクス、AI変革ガイド 第3回:データチームの成功するオペレーティングモデルの構築
Original Blog : The Executive’s Guide to Data, Analytics and AI Transformation, Part 3: Build Successful Operating Models for Data Teams 翻訳: junichi.maruyama...
Spark NLPでDatabricks Lakehouse Platform上のVision Transformers(ViT)をスケールさせる
Scale Vision Transformers (ViT) on the Databricks Lakehouse Platform with Spark NLP 翻訳: junichi.maruyama イントロダクション 2017年のことですが、Google AIの研究者グループが、すべての自然言語処理(NLP)の基準を変えるトランスフォーマーモデルのアーキテクチャを紹介する論文を発表しました。これらの新しいTransformerベースのモデルは、NLPタスクに革命を起こしているように見えますが、コンピュータビジョン(CV)での使用はかなり制限されたままでした。これらの新しいTransformerベースのモデルは、NLPタスクに革命をもたらすように見えるが、コンピュータビジョン(CV)での使用はかなり制限されたままであった。コンピュータビジョンの分野は、畳み込みニューラルネットワーク(CNN)の使用によって支配されてきました。CNNをベースとした一般的なアーキテクチャ(ResNetなど)があります。Goo
AI Functions のご紹介: 大規模な言語モデ ルをDatabricks SQLで統合する
Introducing AI Functions: Integrating Large Language Models with Databricks SQL 翻訳: junichi.maruyama 大規模言語モデルの分野で素晴らしい進歩が見られる中、お客様から、SQLアナリストが日々のワークフローでこの強力なテクノロジーを活用できるようにするにはどうしたらよいかという問い合わせがありました。 本日、私たちはAI Functions のパブリックプレビューを発表できることを嬉しく思います。AI Functionsは、DBに組み込まれたSQL関数で、SQLから直接Large Language Models(LLM)にアクセスできるようになります。 今回の発表により、使い慣れたSQLのインターフェイスから、自社のデータに対してLLMの実験を素早く行うことができるようになりました。正しいLLMプロンプトを開発したら、Delta Live Tablesやスケジュールされたジョブなど、既存のDatabricksツールを使
Databricks Connect “v2” でどこからでも Databricks を使用しよう
Original Blog : Use Databricks from anywhere with Databricks Connect “v2” 翻訳: junichi.maruyama この度、Databricks Connect "v2 "のパブリックプレビューを発表することができ、開発者はどこでも動作するアプリケーションからDatabricksのパワーを利用できるようになりました。 これまで、SQL以外の言語からDatabricksにリモートで接続する方法はありませんでした。 Databricks Connect library をアプリケーションに組み込み、Databricks Lakehouseに接続するだけです!...
Spark Connect がApache Spark 3.4で利用可能になりました
Original Blog : Spark Connect Available in Apache Spark 3.4 翻訳: junichi.maruyama 昨年、Data and AI SummitでSpark Connectが 紹介 されました。最近リリースされたApache SparkTM 3.4の一部として、Spark Connectは一般的に利用できるようになりました。また、最近Databricks ConnectをSpark...
MLflow 2.3の紹介:LLMのネイティブサポートと新機能による強化
Introducing MLflow 2.3: Enhanced with Native LLM Support and New Features 翻訳: junichi.maruyama MLflow は月間 1,300 万ダウンロードを超え、エンドツーエンドの MLOps の主要なプラットフォームとしての地位を確立しており、あらゆる規模のチームがバッチおよびリアルタイム推論用のモデルを追跡、共有、パッケージ化、およびデプロイできるようにしました。MLflowは、何千もの組織で日々採用され、多様なプロダクション機械学習アプリケーションを推進しており、産業界と学界から500人以上の貢献者からなる活発なコミュニティによって活発に開発されています。 今日、私たちはこのオープンソースの機械学習プラットフォームの最新版であるMLflow 2.3を発表することができ、大規模言語モデル(LLM)の管理・導入能力を向上させる革新的な機能が満載されていることに興奮しています。この強化されたLLMサポートは、以下のような形で提供さ