メインコンテンツへジャンプ
<
ページ 4
>

Lakehouseの価値を最大化するためのデータアーキテクチャパターン

Original Blog : A data architecture pattern to maximize the value of the Lakehouse 翻訳: junichi.maruyama Lakehouseの優れた成果の1つは、従来のBI、機械学習&AIといったモダンなユースケースのワークロードを1つのプラットフォームで組み合わせることができることです。このブログ記事では、「1つのプラットフォームに2つのサイロがある」というリスクを軽減するアーキテクチャ・パターンを説明しています。本ブログで紹介するアプローチに従えば、機械学習やAIを利用するデータサイエンティストは、組織のビジネス情報モデルから得られる信頼性の高いデータに容易にアクセスできるようになります。同時に、ビジネスアナリストは、中核となるエンタープライズデータウェアハウス(EDW)の安定性と適合性を維持しながら、レイクハウスの機能を活用してデータウェアハウス(DWH)プロジェクトのデリバリーを加速させることができます。 データレイクと

SAPと共にオープンデータエコシステムを開発する

Original Blog : Developing an Open Data Ecosystem with SAP 翻訳: junichi.maruyama 製造業、エネルギー、ライフサイエンス、小売業など、さまざまな業界で、企業がビジネスの耐久性、回復力、持続可能性を重視し、重要な意思決定にデータを活用するようになってきています。これらの業界の企業における重要なデータの大半は、SAPアプリケーションからもたらされています。 SAP Datasphere は、財務、サプライチェーン、CRM、人事など、ERPやその他の機能アプリケーション群にまたがるSAPデータへのシームレスかつスケーラブルなアクセスを可能にする包括的なデータサービスで、DatabricksはSAPの4つのローンチパートナーに加わったことを発表できることを嬉しく思っています。SAP Datasphereは、 ビジネスデータファブリックアーキテクチャ を実現し、ビジネスコンテキストやデータモデルビューをそのままにSAPデータを提供し、SAPデータの

Delta Live Tablesで10億レコードのETLを1ドル未満で実行した方法

Original: How We Performed ETL on One Billion Records For Under $1 With Delta Live Tables 翻訳: junichi.maruyama 今日、DatabricksはETL(Extract、Transform、Load)の価格とパフォーマンスの新しい標準を打ち立てました。お客様は10年以上前からDatabricksをETLパイプラインに使用していますが、従来のETL技術を使用してEDW(Enterprise Data Warehouse)のディメンションモデルにデータを取り込む場合、クラス最高の価格とパフォーマンスを公式に実証しています。 そのために、データ統合、つまり一般にETLと呼ばれるもののための最初の業界標準ベンチマークである TPC-DI...

Unity Catalogによる分散型データガバナンスと孤立した環境の実現

Original : Distributed Data Governance and Isolated Environments with Unity Catalog 翻訳: junichi.maruyama データ、アナリティクス、AIに業務を依存する組織では、効果的なデータガバナンスが不可欠です。多くの組織で、集中型データガバナンスの価値提案に対する認識が高まってきています。しかし、最高の意図を持っていても、適切な組織プロセスとリソースがなければ、集中型ガバナンスの導入は困難な場合があります。多くの組織では、最高データ責任者(CDO)の役割がまだ確立されておらず、誰が組織全体のデータガバナンス方針を定義し、実行するのかについて疑問が残ります。 その結果、組織全体のデータガバナンスポリシーを定義し実行する責任が一元化されていないことが多く、組織内のビジネスライン、サブユニット、その他の部門間でポリシーが異なったり、管理団体が異なったりすることになります。簡単のため、このパターンを分散型ガバナンスと呼ぶことにしま

Unityカタログの分散・非集中管理に向けた自動化ガイド

Original : An Automated Guide to Distributed and Decentralized Management of Unity Catalog 翻訳: junichi.maruyama Unity Catalog は、あらゆるクラウド上のレイクハウスにあるすべてのデータとAI資産に対して、統一されたガバナンスソリューションを提供します。顧客がUnity Catalogを採用する際、コードアプローチとしてのインフラストラクチャを使用して、これをプログラム的かつ自動的に行いたいと考えています。Unity Catalogでは、Unity Catalogのオブジェクトの最上位コンテナであるメタストアがリージョンごとに1つ存在します。このメタストアには、データ資産(テーブルとビュー)と、アクセスを制御する権限が格納されています。 このことは、Unity Catalogの管理機能を担うプラットフォーム/ガバナンスチームを一元化していない組織にとって、新たな課題となる。具体的には、これらの

パンプキンパイにAIはない、でもあるはずだ:MLとAIを使って斬新なアプリケーション体験を提供する

Original: There’s No AI in Pumpkin Pie, But There Should Be: Delivering Novel Application Experiences Using ML & AI 翻訳: junichi.maruyama ホリデーシーズンが到来し、私たちの体を温め、ウエストラインに挑戦する、豊かでおいしい食べ物がたくさん出てきました。Databricksでは、ホリデーシーズンをより楽しくするために、少し楽しみながら、素晴らしいレシピをお客様と共有したいと思いました。しかし、Databricksである以上、AIを活用してそれを実現する必要がありました。 Databricksを使ったAIのシンプルさを実際に見せるために、私たちは「最高のパンプキンパイを作るにはどうしたらいいか」というトップオブマインドな課題を解決することにしました。このブログ記事では、Databricks...

Databricks レイクハウスプラットフォームでのデータウェアハウスのモデリングと実装

レイクハウスは、データレイクとデータウェアハウスの長所を組み合わせた、新しいデータプラットフォームパラダイムです。多くのユースケースやデータプロダクトを格納できる、大規模なエンタープライズレベルのデータプラットフォームとして設計されています。データレイクとデータウェアハウスを統合した、単一のエンタープライズデータリポジトリとして使用することができます。 データドメイン リアルタイムストリーミングのユースケース データマート 異種データウェアハウス データサイエンス機能ストア、データサイエンスサンドボックス 部門別のセルフサービス型分析サンドボックス ユースケースの多様性を考えると、レイクハウスのプロジェクトによって異なるデータ整理の原則やモデリングテクニックが適用されるかもしれません。技術的には、 Databricks レイクハウスプラットフォーム は、多くの異なるデータモデリング形式をサポートすることができます。この記事では、レイクハウスの Bronze/Silver/Goldデータ編成原則の実装と、異なるデー

FAIR 原則に基づく効率的なデータ管理をレイクハウスで実現

科学における発見とイノベーションの原動力となるデータ。そのデータの価値は、データ管理戦略によって左右されます。データ管理戦略は、データの品質、アクセスの容易さ、結果の再現性を確保するための重要な要素であり、信頼できる科学的なエビデンスを得るうえで欠かすことができません。 あらゆる分野の科学者が大規模なデータセットにアクセスできるようになったことで、管理や制御の煩雑さ、再現不能なデータワークフローをはじめとするビッグデータの問題が過去 10 年間で顕著になり、解決すべき課題となっています。 これを受けて、業界の専門家は、「価値あるデジタル資産の長期的な管理」を中核とした「適切なデータ管理とスチュワードシップ」のフレームワークを策定しました。このことは、2016 年に「 Nature 」誌の記事で初めて取り上げられています。このフレームワークは現在 FAIR 原則として認知されています。FAIR 原則は、デジタル資産の Findability(検索性)、Accessibility(アクセス性)、Interoperab

データレイクで増分 ETL のメリットを活かす - CDC の課題など

August 30, 2021 John O'Dwyer による投稿 in
従来のデータウェアハウスでの増分 ETL といえば、CDC(change data capture、変更データキャプチャ)を利用する方法が一般的になっています。しかし、スケーラビリティ、コスト、状態の把握や機械学習との連携が困難であることなどの問題があり、この CDC により増分 ETL を実行する方法は、必ずしも理想的とはいえません。一方、データレイクでの増分 ETL は、これまで、ビッグデータのテーブルのデータ更新や変更データの特定ができないといった理由により不可能とされてきました。しかし今日、データレイクで増分 ETL を利用することが可能になりました!増分 ETL には多くのメリットがあります。効率性やシンプルさ、データサイエンティストやデータアナリストのどちらも利用できる柔軟なデータアーキテクチャの構築などが挙げられます。このブログでは、データレイクで増分 ETL を使用するメリットと、それをサポートするデータアーキテクチャについて解説します。 増分 ETL とは? まず、増分 ETL とは何かを明らか

Databricks で構築するエンドツーエンドの深層学習パイプライン

深層学習(DL)モデルは、金融サービスにおける不正検知、メディアにおけるパーソナライゼーション、ヘルスケアにおける画像認識など、あらゆる業界のユースケースに適用されています。このような応用範囲の拡大により、深層学習技術の使用は、ほんの数年前に比べてはるかに容易になっています。 TensorFlow や Pytorch などよく使用される深層学習フレームワークは、精度の高いパフォーマンスを発揮できるまでに成熟しています。 マネージド MLflow を備えた Databricks のレイクハウスプラットフォームのような機械学習(ML)環境では、 Horovod や Pandas UDF などのツールを使用した深層学習の分散実行が非常に容易になりました 。 課題 現在でも引き続き残っている主要な課題の 1 つは、制御・再現可能な方法で深層学習の機械学習パイプラインを自動化し、運用を最適化することです。 Kubeflow のような技術はソリューションを提供していますが、多くの場合、深い専門知識を必要とし、利用可能なマネー