メインコンテンツへジャンプ
<
ページ 66
>

カスタマーリテンション(顧客維持)による LTV の向上と最大化 – ML のハイパーパラメータで解約率を予測

顧客のロイヤルティや維持率が高い企業では、収益が同業他社に比べ 250% 早く成長 し、10 年間での株主利益率も 2 倍から5 倍に達します。顧客のロイヤルティを獲得し、定着数を最大にすることは、企業と顧客ベースの両方に多くの利益をもたらします。 ではなぜ多くの企業にとって顧客の維持が難しいのでしょうか?ARPU(顧客 1 人あたりの平均売上高)を指標とする通信会社などのサブスクリプションベースの企業以外は、顧客維持率の公式な開示を重視していない企業がほとんどです。企業では、顧客ではなく製品やサービスの機能面に重点を置き、顧客ロイヤルティはこれらの取り組みによって自然に向上するものと考えています。実際に、 ニールセンの 2020 年の調査結果 では、「企業のマーケティング目標の中で、顧客離脱・解約への対応の優先度は最下位」であることが明らかになっています。 多くの事実からも、顧客の消費行動が変化していることがわかっており、顧客維持は特に重要な課題です。 新型コロナウイルス感染症(COVID-19)による消費行動

Azure 環境でのモダン IIoT 分析 - Part 3

August 20, 2020 Samir GuptaLana KoprivicaHubert Duan による投稿 in
モダン IIoT(産業用 IoT)アプリケーションのための Azure データ分析に関するブログを 3 部構成でお届けしています。前回の Part 2 では、フィールドデバイスからリアルタイムの IIoT データを Azure に取り込み、データレイク上で直接実行する複雑な時系列処理について解説しました。Part 3 となる今回は、機械学習を活用した予測メンテナンスで風力タービンの収益を最大にすると同時に、ダウンタイムによる機会コストを最小限に抑え、利益を最大化する手法を解説します。 モデルのトレーニングによって得られた結果とそれを視覚化したものは、以下のような Power BI レポートに表示されます。 下の図は、エンドツーエンドのアーキテクチャを示したものです。 機械学習:出力と残存耐用年数の最適化 風力タービンのような産業用資産のユーティリティ、耐用期間、運用効率における最適化は、収益とコストに多くのメリットをもたらします。このブログでは、風力タービンの収益を最大にすると同時に、ダウンタイムによる機会コスト

Apache Spark™ 3.0 のデータ型:日付とタイムスタンプ

Apache Spark は、構造化データと非構造化データの処理に使用される非常に一般的なツールです。構造化データの処理に関しては、整数、LONG、DOUBLE、STRING といった多くの基本的なデータ型をサポートしています。Spark は、開発者が理解するのが難しいことが多い DATE や TIMESTAMP などの複雑なデータ型もサポートしています。このブログでは、日付型とタイムスタンプ型について深く掘り下げ、その動作と一般的な問題を回避する方法を解説します。主に、次の 4 つの部分をカバーしています。 日付型と関連する暦法の定義と Spark 3.0 から適用された暦法の変更について タイムスタンプ型の定義とタイムゾーンとの関係(タイムゾーンオフセットの解消に関する詳細と、Spark 3.0 で使用される Java 8 の新しい Time API...

Apache Spark™ と R によるユーザー定義関数の最適化と実用化 —ミネソタ・ツインズにおける投球シナリオのスケーリング–Part 2

序章 Part 1 では 、ミネソタ・ツインズの BOG(Baseball Operations Group)が、選手の成績をより正確に評価するために、過去 1,500 万回の投球ごとに 2 万回、合計 3,000 億回のシミュレーションを実行する必要があったことをお話ししました。BOG のアイディアはシンプルです。 過去 1,500 万回の投球から選手の成績をイメージ化できれば、各選手の分布に従った 3,000 億球のシミュレーションデータからは、より鮮明なイメージと信頼性の高い評価が得られることが想定できます。 このデータは、より多くの勝利を生み出してクラブの収益を上げることを目的とするコーチや人事の決定に影響を与えます。 データを生成・記録するスクリプトと機械学習モデルは全て R...

Delta Engine の概要

本日、Databricks は Delta Engine を発表しました。Delta Engine は、Apache Spark 完全互換のベクトル化クエリエンジンで、最新の CPU アーキテクチャに対応し、Databricks Runtime 7.0 に含まれている Spark 3.0 のクエリオプティマイザおよびキャッシング性能の最適化機能を連携させます。その相乗効果により、データレイク、特に Delta Lake で実現されたデータレイクでのクエリ性能が大幅に高速化され、 レイクハウス アーキテクチャの採用やスケーリングが容易になります。 実行性能のスケーリング...

ミネソタ・ツインズにおける投球シナリオのスケーリング - Part 1

野球の試合における統計分析 メジャーリーグベースボール(MLB)では、投球フォーム、球種や回転数などの投球内容、各選手の打球の動作に至るまで、1 回の投球当たり数十メガバイトのデータが生成されています。1 試合、1 シーズンの間に、これらのデータからいかにして実践可能な気づきを導き出すのでしょうか。2019 年度アメリカン・リーグ中地区優勝チームのミネソタ・ツインズ内の BOG(Baseball Operations Group)は Databricks を導入しています。このブログでは、BOG が Databricks を活用して膨大なセンサーデータを収集し、各投球のシミュレーションを数千回、数万回と実行し、実践可能な気づきを迅速に導き出し、選手の成績の分析やパフォーマンスの改善、競合の偵察、才能評価の改善に役立てる方法を紹介します。ミネソタ・ツインズではさらに、分析サイクルを高速化し、得られた気づきを素速くコーチ陣に伝達することで、試合中の戦略におけるリアルタイム性を高める方法を模索しており、それについても解

Apache Spark 3.0 概要|Python API の強化・PySpark API の拡充など新機能搭載

Apache Spark TM 3.0.0 が Databricks Runtime 7.0 で利用できるようになりました。Spark 3.0.0 はオープンソースコミュニティでの多くのコントリビュートが結実したものです。3,400 以上のパッチが含まれ、Python API および ANSI SQL の機能拡充に加え、開発や調査が行いやすくなるような工夫が施されています。オープンソースプロジェクトとして 10 年目を迎え、多くの参加者の意見と多様なユースケースに応え続けてきた結果が反映されています。 Apache Spark 3.0 の主な新機能...

MLflow モデルレジストリをエンタープライズ機能に拡張

Databricks の MLflow モデルレジストリ にエンタープライズレベルの新機能が追加されました。 Databricks の統合分析プラットフォーム をご利用いただいている場合、MLflow モデルレジストリはデフォルトで有効になります。 このブログでは、モデル管理を一元化するハブとしての MLflow モデルレジストリのメリットをご紹介し、組織内のデータチームによるモデル共有やアクセス制御、モデルレジストリ API を活用した統合や検証について解説します。 MLflow によるハブの一元化が、モデルライフサイクル管理のコラボレーションを可能に MLflow には、実験の一部としての メトリクス 、 パラメータ 、 アーティファクトをトラッキングする機能...

COVID-19 のデータセットが データブリックスで利用可能に ― データコミュニティによる貢献

2020年4月14日初稿、2020年4月21日更新 新型コロナウイルス感染症(COVID-19)の感染拡大による混乱の中、データエンジニアやデータサイエンティストの多くが「データコミュニティとして何ができるだろうか」と自問し続けています。データコミュニティは、この短期間で実際に大きな貢献をしており、その代表例として、 米国ジョンズ・ホプキンス大学のシステム科学工学センター(CSSE)が提供するデータリポジトリ が挙げられます。このデータセットは、COVID-19(2019-nCoV)について最も広く利用されているものの1つです。次のGIF動画は、3月22日から4月14日にかけての検査確定症例(郡地域)と死亡者(円で表現)の比例数を視覚的に示しています。 他にも、病原体の進化をリアルタイムで追跡できる 新型コロナウイルスのゲノム情報 などの例があります(マウスのクリックで 感染と系統が再生 を再生します)。 病院からのリソース使用率のモデリングの有力な例には、 ワシントン大学保健指標評価研究所(IHME) によるC

データレイクとデータウェアハウスとは?それぞれの強み・弱みと次世代のデータ管理システム「データレイクハウス」を解説

Databricks では近年、独立した新しいデータ管理のためのオープンアーキテクチャである「 データレイクハウス 」を利用する多くのユースケースを見てきました。今回は、この新しいアーキテクチャと、かつてのアプローチであるデータウェアハウス(DWH: Data Warehouse)、データレイク(Data Lake)それぞれと比較して優れている点について解説します。 データウェアハウス(DWH)とは データウェアハウス(DWH)とは、膨大な量のデータを利用者の目的に応用しやすくするため、整理・格納する管理システムのことを指します。意思決定支援や BI(ビジネスインテリジェンス)アプリケーションにおいて広く利用されてきており、これには 長い歴史 があります。データウェアハウスの技術は、1980 年代後半の登場以来進化を続け、MPP アーキテクチャなどの並列処理技術の進歩によって、より大規模なデータ処理が可能なシステムがもたらされました。しかし、データウェアハウスには、エクセルで作成されたような構造化データ(あらかじ