メインコンテンツへジャンプ
<
ページ 8
>

Databricks Lakehouse AIでLlama 2 Foundation Modelsが利用可能になりました!

翻訳:Saki Kitaoka. - Original Blog Link 私たちは、Meta AIのLlama 2 チャットモデル ( Meta AI’s Llama 2 ) が Databricks Marketplace で利用可能になり、プライベートモデルのサービングエンドポイントに微調整してデプロイできることを発表できることを嬉しく思います。Databricksマーケットプレイスは、クラウド、リージョン、プラットフォーム間でデータアセット(データセットやノートブックを含む)を共有および交換できるオープンなマーケットプレイスです。既にマーケットプレイスで提供されているデータアセットに加え、この新しいリスティングは、7から70ビリオンのパラメータを持つLlama 2のチャット指向の大規模言語モデル(LLM)、およびUnityカタログの集中ガバナンスと系統追跡へのインスタントアクセスを提供します。各モデルはMLflowにラップされており、Databricksノートブックで MLflow Evaluation.

Lakeviewダッシュボードがパブリックプレビューになりました!

翻訳:Saki Kitaoka. - Original Blog Link Databricksの次世代SQLダッシュボード「 Lakeview dashboards 」のパブリックプレビューを発表できることを嬉しく思います。本日より利用可能なこの新しいダッシュボードエクスペリエンスは、使いやすさ、幅広い配布、ガバナンス、セキュリティのために最適化されています。 Lakeview は、旧世代のダッシュボードと比較して、4 つの主要な改善点を提供します: ビジュアライゼーションの改善 : 新しいビジュアライゼーション・エンジンにより、美しくインタラクティブなチャートが最大10倍高速に描画されます。 共有と配布の最適化 : ドラフト/パブリッシュ機能により、ダッシュボードを自由に編集することができます。Databricks ワークスペースに直接アクセスできない組織内のコンシューマーとも安全に共有できます。 シンプルなデザイン : WYSIWYG...

Databricks Model Servingを使用したプライベートLLMのデプロイ

翻訳:Saki Kitaoka. - Original Blog Link Databricks Model ServingのGPUおよびLLM最適化サポートのパブリックプレビューを発表できることを嬉しく思います!この発表により、LLMやVisionモデルを含む、あらゆるタイプのオープンソースまたは独自のカスタムAIモデルをLakehouseプラットフォーム上にデプロイできるようになります。Databricks Model Servingは、LLM Serving用にモデルを自動的に最適化し、設定なしでクラス最高のパフォーマンスを提供します。 Databricks Model Servingは、統合データおよびAIプラットフォーム上で開発された初のサーバーレスGPUサービング製品です。これにより、データの取り込みから微調整、モデルのデプロイ、モニタリングに至るまで、GenAIアプリケーションの構築とデプロイをすべて単一のプラットフォーム上で行うことができます。 Azure上のユーザーは、Model Serving

Lateral Column Alias (LCA) のサポートについて

翻訳:Junichi Maruyama. - Original Blog Link Apache SparkとDatabricksの新しいSQL機能のサポートをご紹介できることを嬉しく思います: Lateral Column Alias (LCA)です。この機能は、同じSELECTリスト内で先に指定した式を再利用できるようにすることで、複雑なSQLクエリを簡素化し、多くの場合、ネストしたサブクエリや共通テーブル式(CTE)を使用する必要性を排除します。このブログポストでは、この機能の使用例と、SparkとDatabricksのユーザーにもたらす利点について説明します。 Lateral Column エイリアス (LCA) サポートとは? Lateral Column Alias (LCA) は、同じSELECTリスト内で先に指定した式を再利用する機能をユーザーに提供します。 この機能は、以下に示す例を通してより良く理解することができます。以下は単純なクエリです:...

Apache Spark™ 3.5のご紹介

翻訳:Junichi Maruyama. - Original Blog Link 本日、Databricks Runtime 14.0の一部として、Databricks上でApache Spark™ 3.5が利用可能になったことを発表いたします。Spark 3.5のリリースに多大な貢献をしていただいたApache Sparkコミュニティに深く感謝いたします。 Sparkをこれまで以上にアクセスしやすく、多用途で効率的なものにするという我々のミッションに沿った今回のアップデートには、以下のような新機能と改良が盛り込まれています: The English SDK for Apache Spark enables users to...

新しいLLMOps機能を備えたMLflow 2.7のご紹介

翻訳:Junichi Maruyama. - Original Blog Link MLflow 2のLLMOpsサポートの一環として、MLflow 2.7のプロンプト・エンジニアリングをサポートする最新のアップデートをご紹介します。 インタラクティブなプロンプト・インターフェイスでLLMプロジェクトの実行可能性を評価する プロンプトエンジニアリングは、ユースケースが大規模言語モデル(LLM)で解決できるかどうかを迅速に評価するための優れた方法です。MLflow 2.7 の 新しいプロンプト・エンジニアリング UI を使用すると、ビジネス関係者はさまざまなベースモデル、パラ メータ、プロンプトを試して、出力が新しいプロジェクトを開始するのに十分有望かどうかを確認できます。新規のブランク・エクスペリメントを作成するか(既存のエクスペリメントを開く)、「新規実行」をクリックするだけで、インタラクティブなプロンプト・エンジニアリング・ツールにアクセスできます。プレビューに参加するには、 こちら からサインアップしてくだ

LoRAによる効率的なファインチューニング:大規模言語モデルの最適パラメータ選択ガイド

翻訳:Junichi Maruyama. - Original Blog Link ニューラルネットワークベースの技術や大規模言語モデル(LLM)研究の急速な進歩に伴い、企業は価値生成のためのAIアプリケーションにますます関心を寄せている。これらの企業は、分類、要約、シーケンス間タスク、制御されたテキスト生成など、テキスト関連の課題に対処するために、生成および非生成の両方で、さまざまな機械学習アプローチを採用している。組織はサードパーティのAPIを選択することもできるが、独自のデータでモデルを微調整することで、ドメイン固有の適切な結果を提供し、安全な方法でさまざまな環境に展開可能な、費用対効果の高い独立したソリューションを可能にする。 ファインチューニングの戦略を選択する際には、効率的なリソース利用と費用対効果を確保することが重要です。このブログでは、このようなパラメータ効率的な手法の中で、間違いなく最も一般的で効果的なバリエーションであるLoRA(Low Rank Adaptation)について、特にQLoRA

MLflow AI GatewayとLlama 2を使ってジェネレーティブAIアプリを構築する

翻訳:Junichi Maruyama. - Original Blog Link 顧客サポートボット、社内ナレッジグラフ、またはQ&Aシステムを構築するために、顧客は多くの場合、事前に訓練されたモデルを独自のデータと一緒に活用するRAG(Retrieval Augmented Generation)アプリケーションを使用します。しかし、安全なクレデンシャル管理と不正使用防止のためのガードレールがないため、お客様はこれらのアプリケーションへのアクセスと開発を民主化することができません。私たちは最近、 MLflow AI Gateway を発表しました。これは拡張性の高いエンタープライズグレードのAPIゲートウェイで、組織がLLMを管理し、実験や生産に利用できるようにします。本日、AI Gatewayを拡張し、RAGアプリケーションをより良くサポートすることを発表できることを嬉しく思います。組織は、プライベートホスティングモデルAPI( Databricks Model Serving 経由)、プロプライエ

集まれ!Legendary Heroes of DATA + AI !! Vol 5

August 9, 2023 Hisae Inoue による投稿 in
日本のDatabricks Championの皆様に、目指したその理由や、これからの思いについて伺う「集まれ!Legendary Heroes of DATA + AI !!」。Legendary Heroes of Data+AI の皆さんの輪もドンドン広がっています! 今回は、Vol 5として、前回のVol4 に引き続き 株式会社ナレッジコミュニケーション様 から 山川 将也 様 をご紹介します。 —- 以前にご紹介したLegendary...

意外に知られていないDatabricksワークフローの活用方法

August 6, 2023 Takaaki Yayoi による投稿 in
Databricksには Databricksワークフロー という機能があります。 Databricksノートブック で開発したロジックを簡単にスケジュール処理にすることができます。 しかし、Databricksジョブの機能はスケジュール処理だけではありません。以下のように多彩な機能を提供しており、さまざまなユースケースで活躍します。本記事では、Databricksワークフロー、特にDatabricksジョブのさまざまな機能や活用方法をご説明します。 Databricksワークフローとは Databricksワークフローは、Databricksレイクハウスプラットフォームでデータ処理、機械学習、分析パイプラインをオーケストレートします。ワークフローには、Databricksワークスペースで画面の操作を伴わないコードを実行するためのDatabricksジョブ、高信頼かつ維持可能なETLパイプラインを構築するためのDelta Live Tablesが統合されたフルマネージドのオーケストレーションサービスを提供します。