メインコンテンツへジャンプ
<
ページ 46
>

クラウドエンジニアがAWSにDatabricksをデプロイするためのベストプラクティスとガイダンス: パート3

July 28, 2023 JD BraunTony Bo による投稿 in
翻訳:Junichi Maruyama. - Original Blog Link クラウドエンジニアがAWSにDatabricksをデプロイするためのベストプラクティスとガイダンスシリーズの最終回として、重要なトピックである 自動化 を取り上げます。このブログポストでは、デプロイで使用される3つのエンドポイントを分解し、CloudFormationやTerraformのような一般的なInfrastructure as Code (IaC)ツールの例を説明し、自動化のための一般的なベストプラクティスで締めくくります。 しかし、これから参加される方には、Databricks on AWSのアーキテクチャとクラウドエンジニアにとっての利点について説明した part one を読まれることをお勧めします。また part two では、AWS 上でのデプロイとベストプラクティス、そして推奨事項について説明します。 クラウド・オートメーションのバックボーン...

複雑な傾向スコアリング・シナリオをDatabricksで管理する

詳細とノートブックのダウンロードについては、 Solution Accelerator for Propensity Scoring をご覧ください。 翻訳:Junichi Maruyama. - Original Blog Link 消費者は、パーソナライズされた方法でのエンゲージメントをますます期待するようになっている。最近の購入を補完する製品を宣伝する電子メール メッセージであれ、よく閲覧するカテゴリの製品のセールを告知するオンライン バナー広告であれ、または表明された (または暗示された) 興味に沿った動画や記事であれ、消費者は個人のニーズや価値観を認識するメッセージングを好むことを実証しています。 ターゲットを絞ったコンテンツでこのような嗜好に応えることができる組織は、消費者とのエンゲージメントからより高い収益を生み出す 機会 がある一方、そうでない組織は、ますます混雑し、分析が高度化する小売業界において顧客離れのリスクを負うことになる。その結果、多くの企業は、他の分野への支出を減速させている経済の不確

MLflow AI Gatewayの発表

翻訳:Junichi Maruyama. - Original Blog Link 大規模言語モデル(LLM)は、SQLウェアハウスに保存されたテキストデータのセンチメント分析から、製品に関するニュアンスの異なる質問に回答するリアルタイムのチャットボットの導入まで、ビジネス価値を提供する幅広い潜在的なユースケースを解き放ちます。 しかし、これらのアプリケーションのために強力なSaaSやオープンソースのLLMへのアクセスを民主化するには、セキュリティ、コスト、データ関連のさまざまな課題が伴います。 例えば、企業全体で SaaS LLM API トークンを効果的に管理するという具体的な課題を考えてみよう: チームがAPIトークンをプレーンテキストとして通信に貼り付けることによるセキュリティの問題 共有キーがアプリケーションのクラッシュやレート制限の乱用によるコストのピークにつながるというコストの問題 各チームがガードレールなしで独自のAPIトークンを管理することによるガバナンスの問題 これらの課題は、組織がイノベーシ

今すぐ始める。生成AIを使ったチャットボット構築

July 24, 2023 Junichi Maruyama による投稿 in
DATA + AI Summit 2023では多くの生成AIに関するソリューションの発表がありました。 Lakehouse IQ ではお客様毎の環境を理解したLLMが利用できるようになり、 LakehouseAI では、Vector SearchなどのDataset サービスから、AutoML for LLMや MLflow Evaluation などのモデル作成評価そして、Lakehouse Monitoring や GPU Model Serving Endpoint...

Databricks Marketplace for Retailersで数ヶ月から数時間へ

翻訳:Junichi Maruyama. - Original Blog Link 例えば、ある流通業者が、コンビニエンスストアの顧客から炭酸飲料が売れている要因を把握したいと考えたとしよう。従来であれば、コンビニエンスストアの顧客に接触してPOSデータを入手し、追加のパートナーと協力して天候データを取得し、自社の出荷やプロモーション・データとの統合を開発する必要があった。この単純な分析を可能にするには、データエンジニアリングに数週間を要する。 Databricks Marketplaceの発表により、このような分析が数時間でできるようになりました。企業は今、次のことができる: 消費に関する優れた指標である PredictHQ の local event data でソースをリッチ化することで、洞察を得るまでの時間を短縮します アキュウェザー(Accuweather)の履歴および予測気象データ をシームレスに統合して、傾向をよりよく理解し、顧客体験を調整する 40以上の小売業者のPOSソース にアクセスし、在庫と

レイクハウスで顧客生涯価値を見積もる

翻訳:Junichi Maruyama. - Original Blog Link スニル・グプタ博士は『 Driving Digital Strategy 』の中で、「20%の顧客が利益の200%を占めている」と指摘している。この数字が意味するところは、一部の顧客は、その顧客から得られる利益よりも、それ以上にコストがかかっているということである。正確な比率はビジネスによって異なるかもしれないが、小売企業や消費財企業は、価値の高い顧客を特定し、その顧客と長期的な関係を築き、そのような顧客を増やす一方で、リターンが見込めない顧客への投資を抑えることが極めて重要である。 課題は、特定の顧客の潜在的な収益性が常にわかっているわけではないということである。非サブスクリプション・モデルでは、顧客の出入りは自由であるため、ある瞬間にはハイパフォーマンスな顧客としての可能性を示し、次の瞬間には姿を消して二度と戻ってこないかもしれない。しかし、全体として見れば、顧客の取引に関連する頻度、頻度、金額(消費額)には比較的予測可能なパ

Databricks + MosaicML

翻訳:Junichi Maruyama. - Original Blog Link 本日、私たちはMosaicMLの買収を完了したことをお伝えできることを嬉しく思います。MosaicMLは、企業向けにジェネレーティブAIモデルを作成し、カスタマイズするための先進的なプラットフォームです。Databricksの創業以来、私たちのミッションは、あらゆる企業のためにデータとAIを民主化することでした。MosaicMLと共に、ジェネレーティブAIアプリケーションのトレーニング、カスタマイズ、デプロイのためのクラス最高のエクスペリエンスを提供する予定です。 私たちはMosaicMLチームと協力し、ジェネレーティブAIを企業の主流にするために必要な3つの最も重要な開発を加速させます: モデル能力の迅速な民主化: 私たちは、すべての企業がモデルを広く利用できる未来を確信しています。あらゆるテクノロジーの民主化には、価格の引き下げとアクセスの向上が必要です。MosaicMLチームは、大規模な言語モデルのトレーニングとカスタマイズ

MetaのLlama 2とDatabricksでジェネレーティブAIアプリを構築する

翻訳:Junichi Maruyama. - Original Blog Link 本日、Meta社は最新の大規模言語モデル(LLM)である Llama 2 をオープンソースとして公開し、商用利用を開始した1。これはオープンソースAIにとって重要な進展であり、ローンチ・パートナーとしてMetaと協力できたことはエキサイティングでした。私たちは、Llama 2のモデルを事前に試すことができ、その能力とあらゆる可能性のあるアプリケーションに感銘を受けました。 今年初め、メタ社は LLaMA をリリースし、オープンソース(OSS)LLMのフロンティアを大きく前進させた。v1モデルは商用利用はできないが、生成AIとLLMの研究を大きく加速させた。 Alpaca と Vicuna は、高品質な指示フォローとチャットデータがあれば、LLaMAをChatGPTのように振る舞うようにファインチューニングできることを実証した。この研究結果に基づいて、Databricksは databricks-dolly-15k 命令追跡データセ

ビートを逃さない: Databricksワークフローにおけるモニタリングとアラートの新機能を発表

翻訳:Junichi Maruyama. - Original Blog Link この度、 Databricks Workflows の監視・観測機能が強化されました。これには、すべてのプロダクションジョブの実行を一箇所で確認できる新しいリアルタイムインサイトダッシュボード、すべてのワークフローに対する高度で詳細なタスクトラッキング、問題が発生する前に問題をキャッチするための新しいアラート機能などが含まれます。これらの素晴らしい新機能の目標は、あらゆるスキルレベルのデータ実務者の生産性を最適化しながら、すべてのプロダクション・ワークフローを全体的に把握できるようにすることで、日々の業務を簡素化することです。 Databricks Workflows は、Databricks Lakehouse Platformと完全に統合された、データ、アナリティクス、MLのワークロードのための、使いやすく、信頼性の高い、完全に管理されたオーケストレーションソリューションです。直感的なUIを備えているため、すべてのデータ実務者

Databricks Unityカタログのボリュームのパブリックプレビューを発表

翻訳:Junichi Maruyama. - Original Blog Link Data and AI Summit 2023では、Databricks Unity Catalogの Volumes を紹介した。この機能により、Unity Catalog内の表形式データとともに、非構造化データ、半構造化データ、構造化データなど、あらゆる非表形式データの発見、管理、処理、系譜の追跡が可能になります。本日、AWS、Azure、GCPで利用可能な Volumes のパブリックプレビューを発表できることを嬉しく思います。 このブログでは、表形式以外のデータに関連する一般的なユースケースについて説明し、Unity CatalogのVolumesを使用した主な機能の概要を提供し、Volumesの実用的なアプリケーションを示す作業例を紹介し、Volumesを開始する方法の詳細を提供します。 非表形式データのガバナンスとアクセスに関連する一般的なユースケース Databricks Lakehouse...